Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pumps water supply

Boiler feed water pump Water supply to boilers Boilers may come in danger Provide standby pump... [Pg.289]

The high-pressure water supply service is employed for the operation of the ordinary filter pump, which finds so many applications in the laboratory. A typical all metal filter pump is illustrated in Fig. 11, 21, 1. It is an advantage to have a non-return valve fitted in the side arm to prevent sucking back if the water is turned off or if the water pressure is suddenly reduced. Theoretically, an efficient filter pump should reduce the pressure in a system to a value equal to the vapour pressure of the water at the temperature of the water of the supply mains. In practice this pressure is rarely attained (it is usually 4 10 mm. higher) because of the leakage of air into the apparatus and the higher temperature of the laboratory. The vapour pressures of water at 5°, 10°, 15°, 20° and 25° are respectively 6-5, 9-2,12-8, 17 5 and 23 8 mm. respectively. It is evident that the vacuum obtained with a water pump will vary considerably with the temperature of the water and therefore with the season of the year in any case a really good vacuum cannot be produced by a filter pump. [Pg.110]

Water. Water mains should be connected to plant fire mains at two or more poiats, so that a sufficient water supply can be deHvered ia case of emergency. The plant loop and its branches should be adequately valved so that a break can be isolated without affecting a principal part of the system. If there is any question of maintaining adequate pressure, suitable booster pumps should be iastaHed. Any connection made to potable water for process water or cooling water must be made ia such a manner that there can be no backflow of possibly contaminated water check valves alone are not sufficient. The municipal supply should faH freely iato a tank from which the water is pumped for process purposes, or commercially available and approved backflow preventers should be used. [Pg.98]

The centrifugal pump is the type most widely used in the chemical industiy for transferring liquids of aU types—raw materials, materials in manufacture, and finished produc ts—as well as for general services of water supply, boiler feed, condenser circulation, condensate return, etc. These pumps are available through avast range of sizes, in capacities from 0.5 mVh to 2 X 10 mVh (2 gal/min to 10 gaJ/min), and for discharge heads (pressures) from a few meters to approximately 48 MPa (7000 Ibf/iu"). The size and type best suited to a particular apphcation can be determined only by an engineering study of the problem. [Pg.902]

The thermocycle system can be operated only when condensing water is available at a temperature lower than the required chilled-water-supply temperature. Modifications for a centrifugal refrigeration unit include the installation of a small liqmd-refrigerant pump, cooler spray header nozzles, and a vapor bypass line between the cooler and the condenser. Without the compressor operating, a thermocycle capacity up to 35 percent of the refrigeration-unit rating can be produced. [Pg.1167]

Severe cavitation damage on the suction side of the pump reveals insufficient water supply to the pump (insufficient net-positive suction head). Such a circumstance could be caused by partially clogged filters or screens upstream of the pump, or simply by insufficient feed of water to the pump. [Pg.285]

Specimen Location Pump housing, quench-system water supply... [Pg.384]

If the pump is a filter pump off a high-pressure water supply, its performance will be limited by the temperature of the water because the vapour pressure of water at 10°, 15°, 20° and 25° is 9.2, 12.8, 17.5 and 23.8 mm Hg respectively. The pressure can be measured with an ordinary manometer. For vacuums in the range lO" mm Hg to 10 mm Hg, rotary mechanical pumps (oil pumps) are used and the pressure can be measured with a Vacustat McLeod type gauge. If still higher vacuums are required, for example for high vacuum sublimations, a mercury diffusion pump is suitable. Such a pump can provide a vacuum up to 10" mm Hg. For better efficiencies, the pump can be backed up by a mechanical pump. In all cases, the mercury pump is connected to the distillation apparatus through several traps to remove mercury vapours. These traps may operate by chemical action, for example the use of sodium hydroxide pellets to react with acids, or by condensation, in which case empty tubes cooled in solid carbon dioxide-ethanol or liquid nitrogen (contained in wide-mouthed Dewar flasks) are used. [Pg.12]

Where Water Hammer Occurs. Water hammer can occur in any water supply line, hot or cold. Its effects can be even more pronounced in heterogeneous or biphase systems. Biphase systems carry water in two states, as a liquid and as a gas. Such a condition exists in a steam system where condensate coexists with live or flash steam in heat exchangers, tracer lines, steam mains, condensate return lines and, in some cases, pump discharge lines. [Pg.313]

When solution must be pumped, consideration should be given to use of holding tanks between the dry feed system and feed pumps, and the solution water supply should be controlled to prevent excessive dilution. The dry feeders may be started and stopped by tank level probes. Variable-control metering pumps can then transfer the alum stock solution to the point of application without further dilution. Means should be provided for calibration of the chemical feeders. Volumetric feeders may be mounted on platform scales. Belt feeders should include a sample chute and box to catch samples for checking actual delivery with set delivery. Gravimetric feeders are usually furnished with totalizers only. Remote instrumentation is frequently used with gravimetric equipment, but seldom used with volumetric equipment. [Pg.95]

Some licensees have a switch to bypass RCIC high steam tunnel temperature trips. Some licensees are evaluating improvements to prevent seal LOCAs from loss of seal cooling which are most important for W plants, but B W licensees identified improvements related to alternate seal flow capability under loss of power conditions. The use of high temperature seals is noted for some W plants. Many PWR IPEs identify AFWS improvements. These include additional backup water supplies such as the firewater system and redundant pump cooling capability. Other reliability... [Pg.399]

A macro supply curve of conserved electricity tor the U.S. residential sector. Key assumptions are given inside the chart. This supply curve shows estimated savings potentials from 304 different measures. The associated table describing the measures is too long to present here, but certain measures with numbers on top of them are noteworthy from a policy perspective. For example, measure 80 is conversion from conventional water heaters to heat pump water heaters. [Pg.290]

This is a condition which occurs when the feedwater pump is unable to deliver feedwater to the boiler although the feed tank has water available. The temperature of the feed-water coupled with the possible suction effect from the feedwater pump in the line between the feed tank and the pump effectively drops the pressure, causing the feed-water to flash to steam. The pump then loses its water supply. [Pg.346]

Water is injected into the air stream in a fine mist by pumped jets or spinning disc. For practical purposes, the psychrometric plot follows a wet bulb line. The air provides the latent heat of evaporation, resulting in a fall in dry bulb temperature. If water were to be supplied at up to 100°C the humidified condition would be at a correspondingly higher total heat of 420 kJ per kg water supplied. [Pg.452]

The water supplied to a boiler by the FW pump and consisting of a combination of CR and MU water. [Pg.733]

The second valve controls a sample loop, 5 cm long and 1 mm in diameter, packed with dimethyloctadecyl reverse phase comprising of fairly coarse particles 100-120 im in diameter to reduce flow impedance. The sample pump is supplied via a two-way tap from either of two reservoirs, one containing pure water and the other, normal saline. The output of the pump can be used to either force the contents of the open loop sample tube through the packed loop, or to permit washing with an appropriate solvent. The separate pump is necessary to overcome the impedance of the packed loop. [Pg.207]

Unless laboratory studies on material compatibility establish otherwise, it is recommended that equipment used to collect groundwater samples for pesticide analysis be constructed of metal, fluorocarbon polymer, or glass.However, for a water-supply well, inert well, pump, and plumbing materials are not likely to have been installed for all components. In this case, in-place well, pump type, and plumbing materials should be documented. [Pg.806]


See other pages where Pumps water supply is mentioned: [Pg.803]    [Pg.201]    [Pg.477]    [Pg.803]    [Pg.201]    [Pg.477]    [Pg.631]    [Pg.194]    [Pg.79]    [Pg.175]    [Pg.907]    [Pg.336]    [Pg.49]    [Pg.417]    [Pg.236]    [Pg.207]    [Pg.227]    [Pg.347]    [Pg.263]    [Pg.505]    [Pg.348]    [Pg.191]    [Pg.488]    [Pg.1347]    [Pg.77]    [Pg.320]    [Pg.755]    [Pg.59]    [Pg.103]    [Pg.103]    [Pg.103]    [Pg.104]    [Pg.345]    [Pg.101]    [Pg.631]    [Pg.802]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Water pumps

Water supply

© 2024 chempedia.info