Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton-Induced X-ray Emission PIXE

PIXE is a technique that uses a MeV proton beam to induce inner-shell electrons to be ejected from atoms in the sample. As outer-shell electrons fill the vacancies, characteristic X-rays are emitted and can be used to determine the elemental composition of a sample. Only elements heavier than fluorine can be detected due to absorption of lower-energy X-rays in the window between the sample chamber and the X-ray detector. An advantage of PIXE over electron beam techniques is that there is less charging of the sample from the incoming beam and less emission of secondary and auger electrons from the sample. Another is the speed of analysis and the fact that samples can be analyzed without special preparation. A disadvantage for cosmochemistry is that the technique is not as well quantified as electron beam techniques. PIXE has not been widely used in cosmochemistry. [Pg.525]

A publication by Johansson et al. (1970) over thirty years ago marks the introduction of this technique of particle-induced X-ray emission analysis. They used protons and [Pg.97]

Si(Li) spectroscopy, with the capability of simultaneous quantitative analysis of 72 elements ranging from sodium through to uranium in solid, liquid, thin film and aerosol filter samples. The penetrating power of protons allows sampling of depths of several tens of microns, and the beam itself may be focussed, rastered or varied in energy. The use of a proton beam as an excitation source offers several advantages over other X-ray techniques, for example there is a higher rate of data accumulation across the entire spectrum which allows for faster analysis. [Pg.98]

The specimen chamber (or target chamber) may contain a number of samples and standard specimens mounted on the same sample holder. Also here are the X-ray detection system and a Faraday cup which monitors the proton current incident [Pg.98]

It is apparent that PIXE exhibits its maximum sensitivity or minimum detection limit (MDL) in the two atomic number regions 20 Z 35 and 75 Z 85. These are attained at relatively low proton energies, which implies that small accelerators are most suitable for PIXE with the corresponding benefits in reliability and economics. Analysis times are typically a few minutes in duration. The MDL is very strongly influenced by the nature of the sample, especially if there are strong X-rays from the matrix visible in the spectrum or if the sample is strongly insulating. [Pg.99]


There are two principal sources of reliable partitioning data for any trace element glassy volcanic rocks and high temperature experiments. For the reasons outlined above, both sources rely on analytical techniques with high spatial resolution. Typically these are microbeam techniques, such as electron-microprobe (EMPA), laser ablation ICP-MS, ion-microprobe secondary ion mass spectrometry (SIMS) or proton-induced X-ray emission (PIXE). [Pg.62]

Ion beam probes are used in a wide range of techniques, including Secondary Ion Mass Spectroscopy (SIMS), Rutherford backscattering spectroscopy (RBS) and proton-induced X-ray emission (PIXE). The applications of these and number of other uses of ion beam probes are discussed. [Pg.229]

Three analytical techniques which differ in how the primary vacancies are created share the use of such X-rays to identify the elements present. In X-ray fluorescence, the solid sample is irradiated by an X-ray beam (called the primary beam), which interacts with the atoms in the solid to create inner shell vacancies, which then de-excite via the emission of secondary or fluorescent X-rays - hence the name of the technique. The second uses a beam of electrons to create the initial vacancies, giving rise to the family of techniques known collectively as electron microscopy. The third and most recently developed instrumentation uses (usually) a proton beam to cause the initial vacancies, and is known as particle- (or proton-) induced X-ray emission (PIXE). [Pg.38]

This chapter discusses the range of analytical methods which use the properties of X-rays to identify composition. The methods fall into two distinct groups those which study X-rays produced by the atoms to chemically identify the elements present, and X-ray diffraction (XRD), which uses X-rays of known wavelengths to determine the spacing in crystalline structures and therefore identify chemical compounds. The first group includes a variety of methods to identify the elements present, all of which examine the X-rays produced when vacancies in the inner electron shells are filled. These methods vary in how the primary vacancies in the inner electron shell are created. X-ray fluorescence (XRF) uses an X-ray beam to create inner shell vacancies analytical electron microscopy uses electrons, and particle (or proton) induced X-ray emission (PIXE) uses a proton beam. More detailed information on the techniques described here can be found in Ewing (1985, 1997) and Fifield and Kealey (2000). [Pg.93]

Protons can also be used instead of X-rays or electrons to create the initial vacancies in the inner electron shells, giving rise to a method known as proton induced X-ray emission (PIXE). In these instruments a high intensity, highly focused beam of protons is produced by a van de Graaff accelerator,... [Pg.116]

With analytical methods such as x-ray fluorescence (XRF), proton-induced x-ray emission (PIXE), and instrumental neutron activation analysis (INAA), many metals can be simultaneously analyzed without destroying the sample matrix. Of these, XRF and PEXE have good sensitivity and are frequently used to analyze nickel in environmental samples containing low levels of nickel such as rain, snow, and air (Hansson et al. 1988 Landsberger et al. 1983 Schroeder et al. 1987 Wiersema et al. 1984). The Texas Air Control Board, which uses XRF in its network of air monitors, reported a mean minimum detectable value of 6 ng nickel/m (Wiersema et al. 1984). A detection limit of 30 ng/L was obtained using PIXE with a nonselective preconcentration step (Hansson et al. 1988). In these techniques, the sample (e.g., air particulates collected on a filter) is irradiated with a source of x-ray photons or protons. The excited atoms emit their own characteristic energy spectrum, which is detected with an x-ray detector and multichannel analyzer. INAA and neutron activation analysis (NAA) with prior nickel separation and concentration have poor sensitivity and are rarely used (Schroeder et al. 1987 Stoeppler 1984). [Pg.210]

Mannermaa, J. P, Raisanen, J., Hyvonen-Dabek, M., Spring, E., and Yliruusi, J. (1994), Use of proton-induced X-ray emission (PIXE) analysis in the evaluation of large volume parenteral rubber stoppers, Int. J. Pharm., 103,125-129. [Pg.531]

Quantitative trace element analysis of diamond by LA-ICP-MS using different synthetic multielement carbon based standards (e.g., cellulose pellets) is discussed by Rege et al 2, whereby 13C was used for internal standardization. Concentrations of 41 elements were determined in two fibrous diamonds from Jwaneng Botswana (JWA 110 and 115) by relative sensitivity coefficients measured using the synthetic cellulose standard. The analytical data were verified by means of instrumental neutron activation analysis (INAA) and proton induced X-ray emission (PIXE).72... [Pg.200]

High-resolution compositional measurements are possible through use of a variety of microanalytical methods. Ideally, these should be non-destructive, can be targeted on small areas of sample, and have low minimum detection limits. Electron-probe X-ray microanalysis (EPXMA) and proton-induced X-ray emission (PIXE) techniques have both been used successfully on archaeological sediment thin sections (19, 20). Both techniques yield elemental composition data for a range of elements. EPXMA has the advantage of being nondestructive, whereas PIXE when used on thin-section samples is typically destructive conversely the detection limit for PIXE is lower than EPXMA. [Pg.196]

Saleh [114] combined XFS and proton-induced X-ray emission (PIXE) to analyse flour for potassium, calcium, manganese, iron, copper, zinc, bromide, rubidium and strontium. [Pg.212]

The most utilized methods include X-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), activation analysis (AA), optical emission spectroscopy (OES) and inductively coupled plasma (ICP), mass spectroscopy (MS). Less frequently used techniques include ion-selective electrode (ISE), proton induced X-ray emission (PIXE), and ion chromatography (IC). In different laboratories each of these methods may be practiced by using one of several optional approaches or techniques. For instance, activation analysis may involve conventional thermal neutron activation analyses, fast neutron activation analysis, photon activation analysis, prompt gamma activation analysis, or activation analysis with radio chemical separations. X-ray fluorescence options include both wave-length and/or energy dispersive techniques. Atomic absorption spectroscopy options include both conventional flame and flameless graphite tube techniques. [Pg.21]

Particle- or proton-induced. X-ray emission (PIXE) is another modern powerful yet non-destructive elemental analysis technique used to determine the elemental make-up of a sample material. When a material is exposed to a particle or proton beam, atomic interactions occur that give off electromagnetic radiation of wavelengths in the X-ray part of the electromagnetic spectrum characteristic of an element. Three different types of spectra can be collected from a PIXE experiment an X-ray emission spectrum, a Rutherford (proton) backscattering spectrum and a proton transmission spectrum. [Pg.403]

A reasonably complete analysis of the inorganic chemical composition of the aerosol requires much effort and involves, in addition to wet chemical methods, instrumental techniques such as neutron activation analysis, atomic absorption spectroscopy, or proton-induced X-ray emission (PIXE). These latter techniques yield the elemental composition. They furnish no direct information on the chemical compounds involved, although auxiliary data from mineralogy, chemical equilibria, etc. usually leave little doubt about the chemical form in which the elements occur. Thus, sulfur is present predominantly as sulfate, and chlorine and bromine as Cl- and Br-, respectively, whereas sodium potassium, magnesium, and calcium show up as... [Pg.332]


See other pages where Proton-Induced X-ray Emission PIXE is mentioned: [Pg.68]    [Pg.97]    [Pg.349]    [Pg.19]    [Pg.90]    [Pg.116]    [Pg.27]    [Pg.525]    [Pg.126]    [Pg.262]    [Pg.197]    [Pg.390]    [Pg.245]    [Pg.246]    [Pg.447]    [Pg.695]    [Pg.347]    [Pg.416]    [Pg.448]    [Pg.440]    [Pg.96]    [Pg.299]    [Pg.120]   
See also in sourсe #XX -- [ Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 , Pg.105 ]




SEARCH



Emission x-ray

Induced X-ray emission

Induced emission

PIXE

Proton emission

Proton-induced X-ray emission

© 2024 chempedia.info