Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product requirements optimization

First of all, one should note that refining a low cost raw material into low or medium added value products requires extremely delicate optimization. It is out of the question to give them much more than the specifications require thus highlighting the importance of being able to predict the various product yields and qualities that a given crude oil can supply. A profound understanding of crude oils appears therefore indispensable. That is the role of crude oil analysis, an operation traced in part to refining, with the... [Pg.485]

Nitric acid is one of the three major acids of the modem chemical industiy and has been known as a corrosive solvent for metals since alchemical times in the thirteenth centuiy. " " It is now invariably made by the catalytic oxidation of ammonia under conditions which promote the formation of NO rather than the thermodynamically more favoured products N2 or N2O (p. 423). The NO is then further oxidized to NO2 and the gases absorbed in water to yield a concentrated aqueous solution of the acid. The vast scale of production requires the optimization of all the reaction conditions and present-day operations are based on the intricate interaction of fundamental thermodynamics, modem catalyst technology, advanced reactor design, and chemical engineering aspects of process control (see Panel). Production in the USA alone now exceeds 7 million tonnes annually, of which the greater part is used to produce nitrates for fertilizers, explosives and other purposes (see Panel). [Pg.465]

The vertex of a separation region points out the better operating conditions, since it is the point where the purity criteria are fulfilled with a higher feed flow rate (and so lower eluent flow rate). Hence, in the operating conditions specified by the vertex point, both solvent consumption and adsorbent productivity are optimized. Comparing the vertex points obtained for the two values of mass transfer coefficient, we conclude that the mass transfer resistance influences the better SMB operating conditions. Moreover, this influence is emphasized when a higher purity requirement is desired [28]. [Pg.242]

The purification of value-added pharmaceuticals in the past required multiple chromatographic steps for batch purification processes. The design and optimization of these processes were often cumbersome and the operations were fundamentally complex. Individual batch processes requires optimization between chromatographic efficiency and enantioselectivity, which results in major economic ramifications. An additional problem was the extremely short time for development of the purification process. Commercial constraints demand that the time interval between non-optimized laboratory bench purification and the first process-scale production for clinical trials are kept to a minimum. Therefore, rapid process design and optimization methods based on computer aided simulation of an SMB process will assist at this stage. [Pg.256]

The preparation and properties of a novel, commercially viable Li-ion battery based on a gel electrolyte has recently been disclosed by Bellcore (USA) [124]. The technology has, to date, been licensed to six companies and full commercial production is imminent. The polymer membrane is a copolymer based on PVdF copolymerized with hexafluoropropylene (HFP). HFP helps to decrease the crystallinity of the PVdF component, enhancing its ability to absorb liquid. Optimizing the liquid absorption ability, mechanical strength, and processability requires optimized amorphous/crystalline-phase distribution. The PVdF-HFP membrane can absorb plasticizer up to 200 percent of its original volume, especially when a pore former (fumed silica) is added. The liquid electrolyte is typically a solution of LiPF6 in 2 1 ethylene carbonate dimethyl car-... [Pg.517]

With plastics to a greater extent than other materials, an opportunity exists to optimize product design by focusing on material composition and orientation to structural member geometry when required. The type of designer to produce a product depends on the product requirements. As an example in most cases an engineering designer is not needed... [Pg.15]

The reactions are still most often carried out in batch and semi-batch reactors, which implies that time-dependent, dynamic models are required to obtain a realistic description of the process. Diffusion and reaction in porous catalyst layers play a central role. The ultimate goal of the modehng based on the principles of chemical reaction engineering is the intensification of the process by maximizing the yields and selectivities of the desired products and optimizing the conditions for mass transfer. [Pg.170]

The timing of the reaction and washing sequences is considered to be fixed by product requirements, which implies that there is no freedom to change the sequence to optimize the use of water. [Pg.113]

Implementation of the C5, C5 -hydroxy lation protocol as described in Scheme 7.19 above (71/72 to 73/74) provided further efficiencies. The C5,C5 -chlorination proceeded uneventfully, but the chloro to alkoxy interchange was difficult and required optimization of the reaction conditions. The catalyst system derived from Pd2dba3 and the X-phos(t-Bu) ligand proved to be effective in the coupling with KOH to provide the desired bisphenol. The resulting product was highly unstable and decomposed under a one-pot alkylation protocol. Isolation of the bisphenol under carefully controlled conditions followed by immediate benzylation (BnBr, NaH, DMF) furnished key intermediate 79 in 70 % yield. [Pg.175]

The reactions (518->-517 + 517 ) or (518 516 517 + 517 ) are complex processes and require optimization and the use of special procedures in each particular case. If the starting nitronates or nitroso acetals are unsubstituted at the C-3 atom, the target 3-halomethyl-oxazines can be synthesized in satisfactory yields, although diastereomers (517) and (517 ) are unseparable in some cases. In the presence of a substituent R (see entry 14), the yield of the product is substantially lower, whereas the reaction is diastereoselective. [Pg.704]

Production planning/optimization always requires a compromise to be found by the humans in charge of decision-making. In the process of finding this compromise, one needs scheduling programs that are integrated into the ERP systems. [Pg.276]

The production of fine particles that are either desirable (polymer colloids, ceramic precursors, etc.) or undesirable (soot, condensed matter from stack gases, etc.) involves chemical reactions, transport processes, thermodynamics, and physical processes of concern to the chemical engineer. The optimization and control of such processes and the assurance of the quality of the product requires an understanding of the fundamentals of microparticles. [Pg.3]

Standardization of the milk fat and total solids contents of milk is accomplished by blending cream or skim milk with separated milk. Modern technology has developed continuous standardization processes that use turbidity or infrared absorption measuring devices to monitor and adjust the composition of the product as it leaves the separator. It is important that milk be accurately standardized to meet governmental legal requirements and to manufacture dairy products with optimal functional and quality attributes. [Pg.742]

An application case study of the production network optimization model is reported in Chapter 5. In this context the integration of the optimization model into a planning tool to support interactive explorations of the solution space is demonstrated and guidance on how to develop the data required for quantitative strategic network design analyses is provided. Additionally, important analyses that can be performed using the proposed optimization model are introduced and improvement potentials identified in the course of a pilot application in industry are explained. [Pg.6]

Another element of personnel capacity can also affect production network optimization. Each capacity modification and product transfer project requires the expertise of the process development or technical engineering staff. Consequently, the capacity available with these departments can restrict the number of projects that may be pursued in any given time period. Grunow et al. (2006, pp. 6-8) integrate a restriction into their model to incorporate this aspect. While the basic model proposed in this work does not contain such a restriction, it could be easily extended accordingly. [Pg.76]

The paper addresses the problem of optimising design of a grinding mill-classifier system in order to satisfy the product requirements expressed as a combination of the mean and variance of particle size. A discrete model is used for describing the material transport in the mill, and the optimal conditions are chosen by numerical experiments and nonlinear optimisation. [Pg.273]

These molecules act stoichiometrically, binding to a particular receptor or cell type, thus requiring much higher dosing levels and batch sizes, in order to satisfy annual production requirements of the order of 1000kg [1], As a consequence, process optimization and, in particular, downstream processing is become more relevant in terms of productivity and costs of production. [Pg.256]

Creative individuals often dream up certain solutions, products offantasy that question conventional wisdom. However, dreaming must not be the sole activity and should not impede the ability to make specific decisions when required. Optimism, is also a notable characteristic of the creative scientist, believing that there might be a solution , where the pessimist would rather say, there might not be a solution . [Pg.156]


See other pages where Product requirements optimization is mentioned: [Pg.609]    [Pg.609]    [Pg.202]    [Pg.1735]    [Pg.363]    [Pg.99]    [Pg.102]    [Pg.487]    [Pg.254]    [Pg.255]    [Pg.97]    [Pg.725]    [Pg.72]    [Pg.559]    [Pg.278]    [Pg.237]    [Pg.29]    [Pg.556]    [Pg.113]    [Pg.53]    [Pg.270]    [Pg.766]    [Pg.429]    [Pg.470]    [Pg.306]    [Pg.294]    [Pg.198]    [Pg.228]    [Pg.653]    [Pg.30]    [Pg.519]    [Pg.76]    [Pg.264]   
See also in sourсe #XX -- [ Pg.609 ]




SEARCH



Product optimization

Production optimal

Productivity optimization

© 2024 chempedia.info