Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processing contaminant removal

Gas purification processes fall into three categories the removal of gaseous impurities, the removal of particulate impurities, and ultrafine cleaning. The extra expense of the last process is only justified by the nature of the subsequent operations or the need to produce a pure gas stream. Because there are many variables in gas treating, several factors must be considered (/) the types and concentrations of contaminants in the gas (2) the degree of contaminant removal desired (J) the selectivity of acid gas removal required (4) the temperature, pressure, volume, and composition of the gas to be processed (5) the carbon dioxide-to-hydrogen sulfide ratio in the gas and (6) the desirabiUty of sulfur recovery on account of process economics or environmental issues. [Pg.209]

Process condensate from reforming operations is commonly treated by steam stripping. The stripper is operated at a sufficiently high pressure to allow the overhead stripping steam to be used as part of the reformer steam requirement (71). Contaminants removed from the process condensate are reformed to extinction, so disposal to the environment is thereby avoided. This system not only reduces atmospheric emissions, but contributes to the overall efficiency of the process by recovering condensate suitable for boiler feedwater make-up because the process is a net water consumer. [Pg.353]

De-rusting This is a process to remove rust from the surface. The procedure of de-rusting is given in Table AI3.3, column 2. The de-rusting chemical is phosphoric acid based, and does not contaminate the phosphating tank. [Pg.402]

For organic contaminant removal from surface water packed-tower aeration, granular activated carbon (GAC), powdered activated carbon (PAC), diffused aeration, advanced oxidation processes, and reverse osmosis (RO). [Pg.9]

In recapping, DAF is the process of removing suspended solids, oils and other contaminants via the use of bubble flotation. Air is dissolved into the water, then mixed with the wastestream and released from solution while in intimate contact with the contaminants. Air bubbles form, saturated with air, mix with the wastewater influent and are injected into the DAF separation chamber. The dissolved air then comes out of solution, producing literally millions of microscopic bubbles. These bubbles attach themselves to the particulate matter and float then to the surface where they are mechanically skimmed and removed from the tank. Most systems are versatile enough to remove not only finely divided suspended solids, but fats, oils and grease (FOG). Typical wastes handled include various suspended... [Pg.319]

Chemical pretreatment is often used to improve the performance of contaminant removal. The use of chemical flocculants is based on system efficiency, the specific DAF application and cost. Commonly used chemicals include trivalent metallic salts of iron, such as FeClj or FeSO or aluminum, such as AISO. Organic and inorganic polymers (cationic or anionic) are generally used to enhance the DAF process. [Pg.320]

Contaminant removal from the indoor space and associated processes... [Pg.680]

In this mixing process, contaminants such as solvent and/or diluents as well as their removal problems can be avoided. Degradation of the polymers is avoided by proper maintenance of the viscosity and shearing rates. [Pg.654]

The most efficient processes in Table I are for steel and alumintim, mainly because these metals are produced in large amounts, and much technological development has been lavished on them. Magnesium and titanium require chloride intermediates, decreasing their efficiencies of production lead, copper, and nickel require extra processing to remove unwanted impurities. Sulfide ores produce sulfur dioxide (SO2), a pollutant, which must be removed from smokestack gases. For example, in copper production the removal of SO, and its conversion to sulfuric acid adds up to 8(10) JA g of additional process energy consumption. In aluminum production disposal of waste ciyolite must be controlled because of possible fiuoride contamination. [Pg.772]

Deposition is the atmospheric removal process by which gaseous and particulate contaminants are transferred from the atmosphere to surface receptors - soil, vegetation, and surface waters (22,27,28, 32). This process has been conveniently separated into two categories dry and wet deposition. Dry deposition is a direct transfer process that removes contaminants from the atmosphere without the intervention of precipitation, and therefore may occur continuously. Wet deposition involves the removal of contaminants from the atmosphere in an aqueous form and is therefore dependent on the precipitation events of rain, snow, or fog. [Pg.140]

Only a small fraction of faecal contaminants contributed to the enviromnent through human and animal faeces reach new hosts to infect them. Many of the defecated microorganisms never reach the soil and/or water bodies, since faecal wastes are submitted to purification (water) and hygienization (solids) processes, which remove a fraction of the pathogens and indicators. An important fraction of those that reach either the soil or water are removed (adsorption to soil particles and suspended solids, followed by sedimentation) and/or inactivated by natural stressors (physical, chemical and biological) in soil and water bodies. [Pg.152]

We recently demonstrated that photocatalyzed destruction rates of low quantum efficiency contaminant compoimds in air can be promoted substantially by addition of a high quantum efficiency contaminant, trichloroethylene (TCE), in a single pass fixed bed illuminated catalyst, using a residence time of several milliseconds [1-3]. Perchloroethylene (PCE) and trichloropropene (TCP) were also shown to promote contaminant conversion [2]. These results establish a novel potential process approach to cost-effective photocatalytic air treatment for contaminant removal. [Pg.435]

The fourth factor is the current density. At an inert anode and for 100% Faradaic efficiency for water oxidation, the density of the current controls the flux of H+ ions. The cathodic current density and the species available in its vicinity establish the efficiency of the reduction processes (Pb2+ —> Pb). These vary to a greater extent than the anode process, because the pH and the species reaching the cathode vary with processing time. Thus, control of the current density is critical to ensure optimal EO efficiency and contaminant removal. [Pg.637]

In the thermal desorption technique excavated soil is heated to around 200 to 1000°F (93 to 538°C). Volatile and some semivolatile contaminants are vaporized and carried off by air, combustion gas, or inert gas. Off-gas is typically processed to remove particulates. Volatiles in the off-gas may be burned in an afterburner, collected on activated carbon, or recovered in condensation equipment. Thermal desorption systems are physical separation processes that are not designed to provide high levels of organic destruction, although some systems will result in localized oxidation or pyrolysis. [Pg.639]

Aeration is also an efficient process for removing radioactive radon from contaminated well water. [Pg.642]

Pulps from recovered paper or paperboard using a chemical or solvent process to remove contaminants such as inks, coatings, and pigments used to produce fine, tissue, and newsprint papers... [Pg.860]

Contaminant removal processes depend on the type and source of secondary fiber to be pulped. Mill paper waste can be easily repulped with minimal contaminant removal. Recycled postconsumer newspaper, on the other hand, may require extensive contaminant removal, including deinking, prior to reuse. Secondary fiber is typically used in lower-quality applications such as multiply paper-board or corrugating paper. [Pg.867]

To meet the specified standard,4 wastewaters are often subjected to a series of treatment processes before they are discharged into the environment, particularly, water bodies. The treatment processes include physical, chemical, and biological processes that may be applied singly or collectively. The collective application of the processes can be employed in a variety of systems classified as primary, secondary, and tertiary wastewater treatment, to achieve different levels of contaminants removal.2... [Pg.915]


See other pages where Processing contaminant removal is mentioned: [Pg.254]    [Pg.532]    [Pg.429]    [Pg.398]    [Pg.115]    [Pg.172]    [Pg.569]    [Pg.1]    [Pg.229]    [Pg.344]    [Pg.2225]    [Pg.301]    [Pg.85]    [Pg.139]    [Pg.423]    [Pg.149]    [Pg.885]    [Pg.311]    [Pg.400]    [Pg.17]    [Pg.442]    [Pg.489]    [Pg.625]    [Pg.626]    [Pg.732]    [Pg.864]    [Pg.867]    [Pg.869]    [Pg.610]    [Pg.206]    [Pg.227]    [Pg.12]    [Pg.293]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Contaminants removal processes

Contaminants removal processes

Contamination processes

Contamination removal

Removable contamination,

Removal process

Remove process

Removing Processing

© 2024 chempedia.info