Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary furnace

In many of the applications of heat transfer in process plants, one or more of the mechanisms of heat transfer may be involved. In the majority of heat exchangers heat passes through a series of different intervening layers before reaching the second fluid (Figure 9.1). These layers may be of different thicknesses and of different thermal conductivities. The problem of transferring heat to crude oil in the primary furnace before it enters the first distillation column may be considered as an example. The heat from the flames passes by radiation and convection to the pipes in the furnace, by conduction through the... [Pg.381]

Sulfured copper concentrate (25-35% Cu) is processed in a primary furnace where the copper level is enriched to around 65%. [Pg.94]

The Model 100 mobile thermal processor is an ex situ technology that treats soil contaminated with volatile organic compounds (VOCs). The processor treats petroleum-contaminated soil in a primary furnace and then incinerates any remaining combustibles in an afterburner. [Pg.1087]

A simplified flow diagram of a concurrent-flow unit operating on vapor feed is shown in Figure 21. Details of the reactor for operation on partially liquid feed are shown in Figures 22 and 23. The latter operation was typical when revamping an existing countercurrent-flow unit, where it was simpler to leave the tar separator in the circuit. For operation on heavy gas oil, the partially-vaporized effluent from the primary furnace was flashed in the tar separator in the usual manner. The vapors were superheated in the secondary furnace and introduced into the reactor via the vapor-inlet nozzle near the top of the reactor, while the tar-separator bottoms were pumped into the reactor through a liquid-injection nozzle. [Pg.305]

The type of furnace for melting glass typically depends on the type and quantity of glass being produced, and the local fuel and utility costs. While there are exceptions, the following discussion describes the primary furnace types and the glass segments that most commonly use each style. [Pg.223]

As depicted in Fig. 11.17, the primary furnace black partide size is about 10-80 nm. [Pg.1035]

Libbey established the trial procedures for the FlammaTec Flex Burner, including the simple goal of changing the burners out port-by-port over a sbt (6) to eight (8) week period without negatively impacting any of the primary furnace operating criteria. After each port conversion of the burners, the furnace was observed for at least a one-week period prior to the next port... [Pg.94]

The NOx emissions associated with PC firing are fundamentally different from those associated with cyclone firing. The baseline NOx emission level is much lower, and the impact of staging depends mrae heavily upon fuel volatility due to the presence of the flame within the primary furnace. [Pg.66]

With respect to fuels utilized as heating fuels for industrial furnaces, or as motor fuels for large diesel engines such as those in ships or power generation sets, the characteristics of primary importance are viscosity, sulfur content and the content of extremely heavy materials (asphaltenes) whose combustion can cause high emissions of particulates which are incompatible with antipollution legislation. [Pg.178]

Calcium. Calcium is the fifth most abundant element in the earth s cmst. There is no foreseeable lack of this resource as it is virtually unlimited. Primary sources of calcium are lime materials and gypsum, generally classified as soil amendments (see Calcium compounds). Among the more important calcium amendments are blast furnace slag, calcitic limestone, gypsum, hydrated lime, and precipitated lime. Fertilizers that carry calcium are calcium cyanamide, calcium nitrate, phosphate rock, and superphosphates. In addition, there are several organic carriers of calcium. Calcium is widely distributed in nature as calcium carbonate, chalk, marble, gypsum, fluorspar, phosphate rock, and other rocks and minerals. [Pg.245]

Phosphoric Acid. The only inorganic acid used for food appkeations is phosphoric acid [7664-38-2] H PO, which is second only to citric acid in popularity. The primary use of phosphoric acid is in carbonated beverages, especially root beer and cola. It is also used for its leavening, emulsification, nutritive enhancement, water binding, and antimicrobial properties. Eood-grade phosphoric acid is produced by the furnace method. Elemental phosphoms is burned to yield phosphoms pentoxide which is then reacted with water to produce phosphoric acid (see Phosphoric acid and the phosphates) (12). [Pg.436]

Power Supplies and Controls. Induction heating furnace loads rarely can be connected directiy to the user s electric power distribution system. If the load is to operate at the supply frequency, a transformer is used to provide the proper load voltage as weU as isolation from the supply system. Adjustment of the load voltage can be achieved by means of a tapped transformer or by use of a solid-state switch. The low power factor of an induction load can be corrected by installing a capacitor bank in the primary or secondary circuit. [Pg.127]

The term channel induction furnace is appHed to those in which the energy for the process is produced in a channel of molten metal that forms the secondary circuit of an iron core transformer. The primary circuit consists of a copper cod which also encircles the core. This arrangement is quite similar to that used in a utdity transformer. Metal is heated within the loop by the passage of electric current and circulates to the hearth above to overcome the thermal losses of the furnace and provide power to melt additional metal as it is added. Figure 9 illustrates the simplest configuration of a single-channel induction melting furnace. Multiple inductors are also used for appHcations where additional power is required or increased rehabdity is necessary for continuous operation (11). [Pg.130]

The most widely used and best known resistance furnaces are iadirect-heat resistance furnaces or electric resistor furnaces. They are categorized by a combination of four factors batch or continuous protective atmosphere or air atmosphere method of heat transfer and operating temperature. The primary method of heat transfer ia an electric furnace is usually a function of the operating temperature range. The three methods of heat transfer are radiation, convection, and conduction. Radiation and convection apply to all of the furnaces described. Conductive heat transfer is limited to special types of furnaces. [Pg.133]

Heat/Solvent Recovery. The primary appHcation of heat pipes in the chemical industry is for combustion air preheat on various types of process furnaces which simultaneously increases furnace efficiency and throughput and conserves fuel. Advantages include modular design, isothermal tube temperature eliminating cold corner corrosion, high thermal effectiveness, high reHabiHty and options for removable tubes, alternative materials and arrangements, and replacement or add-on sections for increased performance (see Furnaces, fuel-FIREd). [Pg.514]

Steam Reforming. In steam reforming, light hydrocarbon feeds ranging from natural gas to straight mn naphthas are converted to synthesis gas (H2, CO, CO2) by reaction with steam (qv) over a catalyst in a primary reformer furnace. This process is usually operated at 800—870°C and 2.17—2.86... [Pg.418]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

The feed is normally introduced to the top hearth where the rabble arms and teeth attached to the central shaft rotate and spiral soflds across the hearth to the center, where an opening is provided and the soflds drop to the next hearth. The teeth of the rabble arms on the hearth spiral the soflds toward the outside to ports that let the soflds drop down to the next hearth. Soflds continue downward, traversing each hearth until they reach the bottom and the ash is discharged. The primary advantage of this system is the long residence time in the furnace controlled by the speed of the central shaft and pitch of the teeth. [Pg.46]

MIDREX Process. The primary components of a MID REX process plant include the shaft furnace, reformer, and heat recuperator. These components are supported by ancillary systems for handling iron ore, gas, water, and direct reduced iron. A flow sheet is shown in Figure 1. [Pg.427]

The principal U.S. lead producers, ASARCO Inc. and The Doe Run Co., account for 75% of domestic mine production and 100% of primary lead production. Both companies employ sintering/blast furnace operations at their smelters and pyrometaHurgical methods in their refineries. Domestic mine production in 1992 accounted for over 90% of the U.S. primary lead production the balance originated from the smelting of imported ores and concentrates. [Pg.51]

Primary. Mercury metal is produced from its ores by standard methods throughout the world. The ore is heated in retorts or furnaces to... [Pg.106]

In sintering, the green compact is placed on a wide-mesh belt and slowly moves through a controlled atmosphere furnace (Fig. 3). The parts are heated to below the melting point of the base metal, held at the sintering temperature, and cooled. Basically a solid-state process, sintering transforms mechanical bonds, ie, contact points, between the powder particles in the compact into metallurgical bonds which provide the primary functional properties of the part. [Pg.178]


See other pages where Primary furnace is mentioned: [Pg.97]    [Pg.98]    [Pg.28]    [Pg.13]    [Pg.381]    [Pg.8]    [Pg.75]    [Pg.97]    [Pg.98]    [Pg.28]    [Pg.13]    [Pg.381]    [Pg.8]    [Pg.75]    [Pg.361]    [Pg.110]    [Pg.257]    [Pg.119]    [Pg.122]    [Pg.123]    [Pg.174]    [Pg.306]    [Pg.322]    [Pg.419]    [Pg.420]    [Pg.422]    [Pg.431]    [Pg.50]    [Pg.380]    [Pg.422]    [Pg.490]    [Pg.106]    [Pg.167]    [Pg.169]    [Pg.486]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Primary reformer Furnace design

© 2024 chempedia.info