Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy preparation

Theory of bonding Structure and composition Catalytic properties Physical properties New methods of preparation Spectroscopy and microscopy... [Pg.283]

Alkaline and alkaline earth metal-14 compounds Preparation, spectroscopy, structure and reactivity... [Pg.653]

Senge, M. O., Vicente, M. G. H., Gerzevske, K. R., Forsyth, T. R, Smith, K. M. (1994). Models for the photosynthetic reaction center Preparation, spectroscopy, and crystal and molecular structures of cofacial bisporphyrins linked by cis-1,2- and trans-... [Pg.556]

Wortmarm AC, Froehlich PE, Pinto RB, et al. Hep>atic iron quantification by atomic absorption spectrophotometry Full validation of an analytical method using a fast sample preparation. Spectroscopy 2007 21 161-167. [Pg.78]

Undeniably, one of the most important teclmological achievements in the last half of this century is the microelectronics industry, the computer being one of its outstanding products. Essential to current and fiiture advances is the quality of the semiconductor materials used to construct vital electronic components. For example, ultra-clean silicon wafers are needed. Raman spectroscopy contributes to this task as a monitor, in real time, of the composition of the standard SC-1 cleaning solution (a mixture of water, H2O2 and NH OH) [175] that is essential to preparing the ultra-clean wafers. [Pg.1217]

Rohrer G 1993 The preparation of tip and sample surfaces for STM experiments Scanning Tunnelling Microscopy and Spectroscopy ed D A Bonnell (Weinheim VCH) ch 6... [Pg.1720]

These limitations have recently been eliminated using solid-state sources of femtosecond pulses. Most of the femtosecond dye laser teclmology that was in wide use in the late 1980s [11] has been rendered obsolete by tliree teclmical developments the self-mode-locked Ti-sapphire oscillator [23, 24, 25, 26 and 27], the chirped-pulse, solid-state amplifier (CPA) [28, 29, 30 and 31], and the non-collinearly pumped optical parametric amplifier (OPA) [32, 33 and 34]- Moreover, although a number of investigators still construct home-built systems with narrowly chosen capabilities, it is now possible to obtain versatile, nearly state-of-the-art apparatus of the type described below Ifom commercial sources. Just as home-built NMR spectrometers capable of multidimensional or solid-state spectroscopies were still being home built in the late 1970s and now are almost exclusively based on commercially prepared apparatus, it is reasonable to expect that ultrafast spectroscopy in the next decade will be conducted almost exclusively with apparatus ifom conmiercial sources based around entirely solid-state systems. [Pg.1969]

Monolayers of alkanetliiols adsorbed on gold, prepared by immersing tire substrate into solution, have been characterized by a large number of different surface analytical teclmiques. The lateral order in such layers has been investigated using electron [1431, helium [144, 1451 and x-ray [146, 1471 diffraction, as well as witli scanning probe microscopies [122, 1481. Infonnation about tire orientation of tire alkyl chains has been obtained by ellipsometry [149], infrared (IR) spectroscopy [150, 151] and NEXAFS [152]. [Pg.2624]

The preparation and spectroscopic properties (infrared, ultraviolet, NMR) of iV-alkoxycarbonyl-N -(2-thiazolyl)thioureas (268) have been studied by the Nagano group (78, 264). These compounds react with bromine in acetic acid or chloroform to give 2--alkoxycarbonylimino-thiazolo[3,2-h]thiadiazolines (Scheme 162), whose structures were established by mass spectroscopy, infrared, NMR, and reactivity patterns (481). [Pg.96]

Monomer (Section 6 21) The simplest stable molecule from which a particular polymer may be prepared Monosaccharide (Section 25 1) A carbohydrate that cannot be hydrolyzed further to yield a simpler carbohydrate Monosubstituted alkene (Section 5 6) An alkene of the type RCH=CH2 in which there is only one carbon directly bonded to the carbons of the double bond Multiplicity (Section 13 7) The number of peaks into which a signal IS split in nuclear magnetic resonance spectroscopy Signals are described as singlets doublets triplets and so on according to the number of peaks into which they are split... [Pg.1289]

The mole fractions of various dyads in the vinylidine chloride (Mi)-isobutylem (Mj) system were determinedf by NMR spectroscopy. A selection of the value obtained are listed below, as well as the compositions of the feedstocks fron which the copolymers were prepared ... [Pg.466]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

Fluoroacetic acid [144-49-OJ, FCH2COOH, is noted for its high, toxicity to animals, including humans. It is sold in the form of its sodium salt as a rodenticide and general mammalian pest control agent. The acid has mp, 33°C bp, 165°C heat of combustion, —715.8 kJ/mol( —171.08 kcal/mol) (1) enthalpy of vaporization, 83.89 kJ /mol (20.05 kcal/mol) (2). Some thermodynamic and transport properties of its aqueous solutions have been pubHshed (3), as has the molecular stmcture of the acid as deterrnined by microwave spectroscopy (4). Although first prepared in 1896 (5), its unusual toxicity was not pubhshed until 50 years later (6). The acid is the toxic constituent of a South African plant Dichapetalum i mosum better known as gifirlaar (7). At least 24 other poisonous plant species are known to contain it (8). [Pg.307]

Lead Telluride. Lead teUuride [1314-91 -6] PbTe, forms white cubic crystals, mol wt 334.79, sp gr 8.16, and has a hardness of 3 on the Mohs scale. It is very slightly soluble in water, melts at 917°C, and is prepared by melting lead and tellurium together. Lead teUuride has semiconductive and photoconductive properties. It is used in pyrometry, in heat-sensing instmments such as bolometers and infrared spectroscopes (see Infrared technology AND RAMAN SPECTROSCOPY), and in thermoelectric elements to convert heat directly to electricity (33,34,83). Lead teUuride is also used in catalysts for oxygen reduction in fuel ceUs (qv) (84), as cathodes in primary batteries with lithium anodes (85), in electrical contacts for vacuum switches (86), in lead-ion selective electrodes (87), in tunable lasers (qv) (88), and in thermistors (89). [Pg.69]

Chemical Analysis. Plasma oxidation and other reactions often are used to prepare samples for analysis by either wet or dry methods. Plasma excitation is commonly used with atomic emission or absorption spectroscopy for quaUtative and quantitative spectrochemical analysis (86—88). [Pg.114]


See other pages where Spectroscopy preparation is mentioned: [Pg.449]    [Pg.451]    [Pg.226]    [Pg.132]    [Pg.226]    [Pg.449]    [Pg.451]    [Pg.226]    [Pg.132]    [Pg.226]    [Pg.33]    [Pg.217]    [Pg.404]    [Pg.942]    [Pg.1185]    [Pg.1185]    [Pg.1185]    [Pg.1187]    [Pg.1200]    [Pg.1807]    [Pg.1948]    [Pg.1990]    [Pg.1990]    [Pg.107]    [Pg.190]    [Pg.176]    [Pg.208]    [Pg.286]    [Pg.171]    [Pg.163]    [Pg.185]    [Pg.209]    [Pg.323]    [Pg.405]    [Pg.66]    [Pg.300]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



© 2024 chempedia.info