Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preconcentration techniques analytical

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

The term direct TXRF refers to surface impurity analysis with no surface preparation, as described above, achieving detection Umits of 10 °—10 cm for heavy-metal atoms on the silicon surface. The increasit complexity of integrated circuits fabricated from silicon wafers will demand even greater surfrce purity in the future, with accordingly better detection limits in analytical techniques. Detection limits of less than 10 cm can be achieved, for example, for Fe, using a preconcentration technique known as Vapor Phase Decomposition (VPD). [Pg.352]

Determination of trace metals in seawater represents one of the most challenging tasks in chemical analysis because the parts per billion (ppb) or sub-ppb levels of analyte are very susceptible to matrix interference from alkali or alkaline-earth metals and their associated counterions. For instance, the alkali metals tend to affect the atomisation and the ionisation equilibrium process in atomic spectroscopy, and the associated counterions such as the chloride ions might be preferentially adsorbed onto the electrode surface to give some undesirable electrochemical side reactions in voltammetric analysis. Thus, most current methods for seawater analysis employ some kind of analyte preconcentration along with matrix rejection techniques. These preconcentration techniques include coprecipitation, solvent extraction, column adsorption, electrodeposition, and Donnan dialysis. [Pg.128]

At present, inductively coupled plasma mass spectrometry provides a unique, powerful alternative for the determination of rare earths in natural samples [638,639]. Nevertheless, its application to the determination of rare earths at ultratrace concentration level in seawater is limited, because highly saline samples can cause both spectral interferences and matrix effects [640]. Therefore, a separation of the matrix components and preconcentration of the analytes are prerequisites. To achieve this goal, many preconcentration techniques have been used, including coprecipitation with... [Pg.214]

The major anions and cations in seawater have a significant influence on most analytical protocols used to determine trace metals at low concentrations, so production of reference materials in seawater is absolutely essential. The major ions interfere strongly with metal analysis using graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma mass spectroscopy (ICP-MS) and must be eliminated. Consequently, preconcentration techniques used to lower detection limits must also exclude these elements. Techniques based on solvent extraction of hydrophobic chelates and column preconcentration using Chelex 100 achieve these objectives and have been widely used with GFAAS. [Pg.50]

Cloud point extraction has been applied to the separation and preconcentration of analytes including metal ions, pesticides, fungicides, and proteins from different matrices prior to the determination of the analyte by techniques such as atomic absorption, gas chromatography, high performance liquid chromatography, capillary zone electrophoresis, etc. [Pg.584]

HSSPIVIE Headspace solid-phase microextraction a preconcentration technique that concentrates volatile analytes on a fiber than can be inserted directly into a GC... [Pg.127]

Analytical separation of several organics from water by PVC polymer is feasible. A solvent extraction model describes the separation dynamics and pH dependence. Selectivity via pH control of the extraction step and preconcentration of analyte can be accomplished. These results suggest that other polymer solvent extraction schemes can be developed by using this approach. The flow-through amperometric technique provides a well-suited detector component for the technique. [Pg.352]

Determination of inorganic anions by capillary electrophoresis is critically compared with ion chromatographic determinations on the basis of recent literature in the field. After a very brief summary of the theoretical background, the selection and optimization of the running electrolyte system are discussed, especially in connection with modification of the electroosmotic flow. Preconcentration techniques are surveyed, as are the approaches to the sample introduction and analyte detection. The principal analytical parameters of the determinations are evaluated and illustrated on selected applications described in the literature. 1997 Elsevier Science B.V. [Pg.1186]

Michulec, M. and W. Wardencki. 2005. Selected aspects of chromatographic solvents residues determination using HS, SPME an SDE techniques for isolation and preconcentration of analytes. Book of abstracts of 11th International Symposium on Separation Sciences, September 12-14, 2005, Pardubice, Czech Republic. [Pg.367]

The techniques of sample preparation, extraction (isolation), and/or preconcentration of analytes are usually applied in the analysis of trace components of gaseous, liquid, and solid samples. During this operation, transport of analytes from primary matrices (donors) to the secondary matrix (the acceptor) takes place. It should be remembered, however, that the extraction and preconcentration steps could be a source of environmental pollution. The techniques of sample preparation introduced in this chapter have the following advantages253 ... [Pg.460]

Solid-Phase Microextraction Solid-phase microextraction (SPME) is a preconcentration technique based on the sorption of analytes present in a liquid phase or, more often, in a headspace gaseous phase, on a microbber coated with a chromatographic sorbent and incorporated in a microsyringe [15]. The analytes sorbed in the coating are transferred to a GC injector for thermal desorption. [Pg.508]

The detection limits obtained by flame and graphite furnace AAS and the concentration levels of the elements in seawater are summarized in Table 2. In general, graphite furnace AAS provides better sensitivities for many elements than the flame technique. Even so, AAS sensitivity is insufficient for the direct determination of most ultra-trace elements. Furthermore, concentrated salts and undissolved particulates cause severe interferences with the determination of trace elements by AAS. Therefore, it is necessary to concentrate the analytes before the determination, and, if possible, to separate the analytes from dissolved major constituents and particulates. Solvent extraction, coprecipitation and ion-exchange techniques are the most widely used techniques for the preconcentration of seawater. In the following sections, these techniques will be reviewed. It should be noted here that the efficiencies of the recovery of the analytes as well as the contamination from reagents and solvents must be carefully examined when the preconcentration techniques are applied. Chakrabarti et al. [10] have summarized the work on the application of preconcentration techniques to marine analysis by AAS. Hence, only some representative applications will be introduced hereafter. [Pg.103]

A method for analysis of polar pesticides in wine by the use of automated in-tube SPME coupled with LC/ESI-MS was proposed (Wu et al., 2002). In-tube SPME is a microextraction and preconcentration technique that can be coupled on-line with high-performance liquid chromatography (HPLC), suitable for the analysis of less volatile and/ or thermally labile compounds. This technique uses a coated open tubular capillary as an SPME device and automated extraction. Using a polypyrrole coating, six phenylurea pesticides (diuron, fluometuron, linuron, monuron, neburon, siduron) and six carbamates (barban, car-baryl, chlorpropham, methiocarb, promecarb, propham) were analyzed in wine. Structures of compounds are reported in Fig. 9.4. Due to the high extraction efficiency of the fiber toward polar compounds, benzene compounds, and anionic species, LODs ranging between 0.01 and 1.2pg/L were achieved, even if the sample ethanol content affects the recoveries of analytes. [Pg.291]

LLE consists of partitioning of an analyte from water into an immiscible solvent. LLE of organic contaminants from water samples is very much on the decline as a preconcentration technique. This is due to the fact that large volumes of toxic organic solvents, such as methylene chloride, are needed, which creates an expensive waste stream and unnecessarily exposes laboratory workers to hazardous fumes. Furthermore, developments in separation technology have provided several superior methods for use today. Nevertheless, LLE is still being applied to the extraction of PAHs from water samples and an EPA Method still exists for its use. [Pg.567]

The final aim of preconcentration procedures is to obtain the sample to be analyzed in a suitable solvent, within a concentration range compatible with the sensitivity and detection limits of the instrumentation used. One of the major problems related to preconcentration methods is the possibility of severe and/or nonreproducible losses of the analytes during sample manipulation. Thus, the procedure adopted should be carefully evaluated for sample losses and reproducibility. In the following sections the various preconcentration techniques formerly and currently applied to the analysis of OCPs will be examined. [Pg.811]

Since its introduction, SPME has found numerous applicahons in the analysis of different classes of compounds present in various matrices. Several analytical methods for the determination of OCPs in water samples which make use of SPME as extracting and preconcentrating technique have been described. Magdic and Pawliszyn analyzed environmental water samples for the determination of OCPs using a PDMS-coated hber (him thickness 100 /rm). PDMS was preferred to other commercially available coating, i.e., polyacrylate, the latter being... [Pg.818]

SPME was hrst used by Pawliszyn et al. in 1990. It is a two-step process conductive to the simultaneous extraction and preconcentration of analytes form sample matrices. In the first step, a fused-silica fiber coated with a polymeric stationary phase is exposed to the sample matrix where the analyte partitions between the matrix and the polymeric stationary phase. In the second step, the fiber/analyte is transferred to the analytical instrument for desorption, separation, and quantification. SPME has a number of advantages over traditional extraction techniques for pesticides. In fact, it is fast, simple, solvent-free, and easily automated for both GC and HPLC instruments. It exhibits good linearity and sensitivity. Thus, carbamate and organophosphorus pesticides in golf course samples were successfully extracted by SPME and analyzed by HPLC by Jinno et al. ... [Pg.905]

The principle of the FIA preconcentration technique is illustrated in Fig. 4.38, which demonstrates how reduced dispersion of the injected sample (i.e., D < 1) might be achieved by introducing a relatively large volume of sample solution, the analyte content of which is retained on an incorporated miniaturized packed reactor within the FIA channel, from which column the analyte subsequently is released and passed to a detector. The method was originally proposed to enhance the sensitivity of measurement of cationic trace elements in very diluted aqueous samples using... [Pg.203]


See other pages where Preconcentration techniques analytical is mentioned: [Pg.144]    [Pg.60]    [Pg.144]    [Pg.431]    [Pg.53]    [Pg.2]    [Pg.565]    [Pg.566]    [Pg.130]    [Pg.701]    [Pg.431]    [Pg.148]    [Pg.131]    [Pg.160]    [Pg.164]    [Pg.314]    [Pg.318]    [Pg.80]    [Pg.98]    [Pg.113]    [Pg.406]    [Pg.346]    [Pg.120]    [Pg.136]    [Pg.78]    [Pg.428]    [Pg.473]    [Pg.82]    [Pg.201]    [Pg.623]    [Pg.690]   
See also in sourсe #XX -- [ Pg.480 , Pg.481 , Pg.482 ]




SEARCH



Analytical techniques

Preconcentration

Preconcentration preconcentrator

Preconcentration techniques

Preconcentrator

© 2024 chempedia.info