Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium hydroxide, hydrolysis

The reaction of ( S)-1 with isobutyraldehyde in benzene provides a 92 8 mixture of cis-44 and trans-45, whereas the same reaction with pivaldehyde affords only cis-46 in 74% yield. The reaction of ( S)-1 with pivaldehyde dimethyl acetal in the presence of pyridinium p-toluenesulfonate in a refluxing mixture of cyclohexane-ethyl acetate provides a 97 3 cis trans mixture of 46, but in only 25% yield [10]. Treatment of 46 with LDA at —70 °C followed by alkylation with methyl iodide proceeds in 94% yield to provide a 93 7 mixture of cis, trans isomers. Potassium hydroxide hydrolysis affords (5)-( + )-atrolactic acid (47) possessing 85% ee (Scheme 9). [Pg.142]

By hydrolysis of substituted malonic esters with 50 per cent, potassium hydroxide, followed by decarboxylation of the resulting malonic add by heating above the m.p. or, better, by rendering the aqueous solution of the potassium salt of the dibasic acid strongly acid and refluxing the mixture, for example ... [Pg.354]

Boil 2 g. of the ester with 30 ml. of 10 per cent, sodium or potassium hydroxide solution under reflux for at least 1 hour. If the alcohol formed is water (or alkali) soluble, the completion of the hydrolysis will be indicated by the disappearance of the ester layer. Distil ofiF the liquid through the same condenser and collect the first 3-5 ml. of distillate. If a distinct la3 er separates on standing (or upon saturation of half the distillate with potassium carbonate), remove this layer with a capillary dropper, dry it with a little anhydrous potassium carbonate or anhydrous calcium sulphate, and determine the b.p. by the SiwoloboflF method... [Pg.391]

It is frequently advisable in the routine examination of an ester, and before any derivatives are considered, to determine the saponification equivalent of the ester. In order to ensure that complete hydrolysis takes place in a comparatively short time, the quantitative saponi fication is conducted with a standardised alcoholic solution of caustic alkali—preferably potassium hydroxide since the potassium salts of organic acids are usuaUy more soluble than the sodium salts. A knowledge of the b.p. and the saponification equivalent of the unknown ester would provide the basis for a fairly accurate approximation of the size of the ester molecule. It must, however, be borne in mind that certain structures may effect the values of the equivalent thus aliphatic halo genated esters may consume alkali because of hydrolysis of part of the halogen during the determination, nitro esters may be reduced by the alkaline hydrolysis medium, etc. [Pg.392]

Into a 2-litre, three-necked flask, fitted with a separatory funnel, a mechanical stirrer and a reflux condenser, place a hot solution of 200 g. of potassium hydroxide in 200 ml. of water. Stir the solution and add slowly 200 g. of ethyl n-butylmalonate (Section 111,154). A vigorous reaction occurs and the solution refluxes. When all the ester has been added, boil the solution gently for 2-3 hours, i.e., until hydrolysis is complete a test portion should dissolve completely in water. Dilute with 200 ml. of water and distil oflF 200 ml. of liquid in order to ensure the complete removal of the alcohol formed in the hydrolysis (1) it is best to connect the flask by means of a wide delivery tube to a condenser set for downward distillation (compare Fig. II, 41, 1 but with a mercury-sealed stirrer in the centre neck). Replace the separatory funnel and the reflux condenser. [Pg.486]

Method 2 (Alkaline hydrolysis). Use a solution of 15 g. of p-bromo-acetanihde in 30 ml. of boiling ethyl alcohol, and add a solution of 7 5 g. of potassium hydroxide in 10 ml. of water. Reflux for 40 minutes, dilute with 120 ml. of water, and distil vmtil 75 ml. of distillate (alcohol and water) are collected pour the residue into 150 ml, of cold water. [Pg.580]

Trimethylene dibromide (1 mol) condenses with ethyl malonate (1 mol) in the presence of sodium ethoxide (2 mols) to form ethyl cydobutane-1 1-dksrboxylate (I). Upon hydrolysis of the latter with alcoholic potassium hydroxide, followed by acidification cyciobutane-1 1-dicarboxylic acid (II) is obtained. [Pg.857]

Mesityl oxide (Section 111,79) (I) condenses with ethyl malonate in the presence of sodium ethoxide to give the sodium derivative of (II) this upon hydrolysis with aqueous potassium hydroxide, followed by acidification, gives the cyclic diketone 5 5-dimethyl-l 3-cycfohexanedione (III), of which the enoUc form is 5 5-dimethyldihydroresorcinol (IV) ... [Pg.963]

The most widely used method for the preparation of carboxylic acids is ester hydrolysis. The esters are generally prepared by heterocyclization (cf. Chapter II), the most useful and versatile of which is the Hantzsch s synthesis, that is the condensation of an halogenated a- or /3 keto ester with a thioamide (1-20). For example ethyl 4-thiazole carboxylate (3) was prepared by Jones et al. from ethyl a-bromoacetoacetate (1) and thioformamide (2) (1). Hydrolysis of the ester with potassium hydroxide gave the corresponding acid (4) after acidification (Scheme 1). [Pg.520]

A Hquid-phase isophorone process is depicted ia Figure 4 (83). A mixture of acetone, water, and potassium hydroxide (0.1%) are fed to a pressure column which operates at head conditions of 205°C and 3.5 MPa (- 500 psi). Acetone condensation reactions occur on the upper trays, high boiling products move down the column, and unreacted acetone is distilled overhead ia a water—acetone a2eotrope which is recycled to the column as reflux. In the lower section of the column, water and alkaH promote hydrolysis of reaction by-products to produce both isophorone and recyclable acetone. Acetone conversion is typically ia the range 6—10% and about 70% yield of isophorone is obtained. Condensation—hydrolysis technology (195—198), and other Hquid-phase production processes have been reported (199—205). [Pg.494]

An alternative synthesis route for PES involves the partial hydrolysis of dichlorodiphenyl sulfone (2) with base to produce 4-chloro-4 -hydroxydiphenylsulfone [7402-67-7] (3) followed by the polycondensation of this difimctional monomer in the presence of potassium hydroxide or potassium carbonate (7). [Pg.462]

Reaction of olefin oxides (epoxides) to produce poly(oxyalkylene) ether derivatives is the etherification of polyols of greatest commercial importance. Epoxides used include ethylene oxide, propylene oxide, and epichl orohydrin. The products of oxyalkylation have the same number of hydroxyl groups per mole as the starting polyol. Examples include the poly(oxypropylene) ethers of sorbitol (130) and lactitol (131), usually formed in the presence of an alkaline catalyst such as potassium hydroxide. Reaction of epichl orohydrin and isosorbide leads to the bisglycidyl ether (132). A polysubstituted carboxyethyl ether of mannitol has been obtained by the interaction of mannitol with acrylonitrile followed by hydrolysis of the intermediate cyanoethyl ether (133). [Pg.51]

Hydrated Stannic Oxide. Hydrated stannic oxide of variable water content is obtained by the hydrolysis of stannates. Acidification of a sodium stannate solution precipitates the hydrate as a flocculent white mass. The colloidal solution, which is obtained by washing the mass free of water-soluble ions and peptization with potassium hydroxide, is stable below 50°C and forms the basis for the patented Tin Sol process for replenishing tin in staimate tin-plating baths. A similar type of solution (Staimasol A and B) is prepared by the direct electrolysis of concentrated potassium staimate solutions (26). [Pg.66]

Anatase and mtile are produced commercially, whereas brookite has been produced by heating amorphous titanium dioxide, which is prepared from an alkyl titanate or sodium titanate [12034-34-3] with sodium or potassium hydroxide in. an autoclave at 200—600°C for several days. Only mtile has been synthesized from melts in the form of large single crystals. More recentiy (57), a new polymorph of titanium dioxide, Ti02(B), has been demonstrated, which is formed by hydrolysis of K Ti O to form 20, followed by subsequent calcination/dehydration at 500°C. The relatively open stmcture... [Pg.120]

The catalysts most often described in the literature (209—211,252) are sodium or potassium hydroxide, methoxide, or ethoxide. The reported ratio of alkali metal hydroxides or metal alcoholates to that of poly(vinyl acetate) needed for conversion ranges from 0.2 to 4.0 wt % (211). Acid catalysts ate normally strong mineral acids such as sulfuric or hydrochloric acid (252—254). Acid-cataly2ed hydrolysis is much slower than that of the alkaline-cataly2ed hydrolysis, a fact that has limited the commercial use of these catalysts. [Pg.484]

Chloroform and water at 0°C form six-sided crystals of a hydrate, CHCl I8H2O [67922-19-41which decompose at 1.6°C. Chloroform does not decompose appreciably when in prolonged contact with water at ordinary temperature and in the absence of air. However, on prolonged heating with water at 225°C, decomposition to formic acid, carbon monoxide, and hydrogen chloride occurs. A similar hydrolysis takes place when chloroform is decomposed at elevated temperature by potassium hydroxide. [Pg.524]

Manufacture. A limited, amount of natural cinnamyl alcohol is produced by the alkaline hydrolysis of the cinnamyl cinnamate present in Styrax Oil. Thus treatment of the essential oil with alcohoHc potassium hydroxide Hberates cinnamyl alcohol of reasonable purity which is then subjected to distillation. This product is sometimes preferred in fine fragrance perfumery because it contains trace impurities that have a rounding effect in finished formulations. [Pg.176]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Cellobiose was prepared first by Skraup and Konig by the saponification of the octaacetate with alcoholic potassium hydroxide, and the method was improved by Pringsheim and Merkatz.3 Aqueous barium hydroxide also has been employed for the purpose, and methyl alcoholic ammonia has been used extensively for the hydrolysis of carbohydrate acetates. The method of catalytic hydrolysis with a small quantity of sodium methylate was introduced by Zemplen,i who considered the action to be due to the addition of the reagent to the ester-carbonyl groups of the sugar acetate and the decomposition of the addition compound by reaction with alcohol. The present procedure, reported by Zemplen, Gerecs, and Hadacsy, is a considerable improvement over the original method (see Note 2). [Pg.35]


See other pages where Potassium hydroxide, hydrolysis is mentioned: [Pg.72]    [Pg.284]    [Pg.113]    [Pg.216]    [Pg.72]    [Pg.284]    [Pg.113]    [Pg.216]    [Pg.28]    [Pg.149]    [Pg.177]    [Pg.392]    [Pg.410]    [Pg.487]    [Pg.488]    [Pg.769]    [Pg.1062]    [Pg.527]    [Pg.460]    [Pg.244]    [Pg.292]    [Pg.36]    [Pg.92]    [Pg.133]    [Pg.386]    [Pg.508]    [Pg.525]    [Pg.588]    [Pg.605]    [Pg.623]    [Pg.651]    [Pg.663]    [Pg.666]    [Pg.729]   
See also in sourсe #XX -- [ Pg.2 , Pg.9 ]




SEARCH



Hydroxides Potassium hydroxide

Potassium hydroxide

© 2024 chempedia.info