Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane Crystalline

Trimethyl-l,3-pentanediol (7) is a white, crystalline soHd. It is used in surface coating and unsaturated polyester resins. It also appears promising as an intermediate for synthetic lubricants and polyurethane elastomers and foams. [Pg.373]

The physical properties of polyurethanes are derived from their molecular stmcture and deterrnined by the choice of building blocks as weU as the supramolecular stmctures caused by atomic interaction between chains. The abiHty to crystalline, the flexibiHty of the chains, and spacing of polar groups are of considerable importance, especially in linear thermoplastic materials. In rigid cross-linked systems, eg, polyurethane foams, other factors such as density determine the final properties. [Pg.343]

The pseudocross-links, generated by the hard-segment interactions, are reversed by heating or dissolution. Without the domain crystallinity, thermoplastic polyurethanes would lack elastic character and be more gum-like in nature. In view of the outlined morphology, it is not surprising that many products develop their ultimate properties only on curing at elevated temperature, which allows the soft- and hard-phase segments to separate. [Pg.344]

Mesogenic diols, such as 4,4 -bis( CO-hydtoxyaLkoxy)biphenyls, ate used with 2,4-TDI or 1,4-diisocyanatobenzene (PPDI) to constmct Hquid crystalline polyurethanes (7). Partial replacement of the mesogenic diols by PTMG shows that the use of lower molecular weight flexible spacers form polymers that have a more stable mesophase and exhibit higher crystallinity (8). Another approach to Hquid crystal polyurethanes involves the attachment of cholesterol to the polyurethane chain utilizing the dual reactivity in 2,4-TDI (9). [Pg.344]

In thermoplastic polyurethanes, polyesters, and polyamides, the crystalline end segments, together with the polar center segments, impart good oil resistance and high upper service temperatures. The hard component in most hard polymer/elastomer combinations is crystalline and imparts resistance to solvents and oils, as well as providing the products with relatively high upper service temperatures. [Pg.14]

Whilst the crystalline fibres and their thermoplastic counterparts are no longer of importance, elastic polyurethane fibres, commonly known as spandex fibres, are of significance. These will be considered further in Section 27.4.1. [Pg.784]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Block copolymers can contain crystalline or amorphous hard blocks. Examples of crystalline block copolymers are polyurethanes (e.g. B.F. Goodrich s Estane line), polyether esters (e.g. Dupont s Hytrel polymers), polyether amides (e.g. Atofina s Pebax grades). Polyurethanes have enjoyed limited utility due to their relatively low thermal stability use temperatures must be kept below 275°F, due to the reversibility of the urethane linkage. Recently, polyurethanes with stability at 350°F for nearly 100 h have been claimed [2]. Polyether esters and polyether amides have been explored for PSA applications where their heat and plasticizer resistance is a benefit [3]. However, the high price of these materials and their multiblock architecture have limited their use. All of these crystalline block copolymers consist of multiblocks with relatively short, amorphous, polyether or polyester mid-blocks. Consequently they can not be diluted as extensively with tackifiers and diluents as styrenic triblock copolymers. Thereby it is more difficult to obtain strong, yet soft adhesives — the primary goals of adding rubber to hot melts. [Pg.713]

Poly(tetramethylene oxide) polyols (PTMEG) are high performance polyethers that are crystalline waxes at molecular weights above 650 and liquids at lower molecular weights. They are only available as diols, but they produce adhesives with good hydrolysis resistance and moisture resistance, which is why these adhesives are even used in medical devices, blood bags, catheters, and heart-assist devices [25]. Certain thermoplastic polyurethane adhesives and solvent-borne adhesives are also based on PTMEG s. [Pg.770]

Crystalline polyesters are highly important as adhesive raw materials. They are normally crystalline waxes and are highly symmetrical in nature, which can aid the crystallization process [26]. Poly(hexamethylene adipate) and poly(caprolactone), shown in Table 2, are only two of the many crystallizable backbones. Poly(ethylene adipate) and poly(letramethylene adipate) are also commonly used in urethane adhesives. The crystalline polyesters are used in curing hot melts, waterborne polyurethanes, thermoplastic polyurethanes, and solvent-borne urethane adhesives. The adipates are available mostly as diols. The poly(caprolactones) are available as diols and triols. [Pg.770]

Polyurethane dispersions (PUD s) are usually high-performance adhesives based on crystalline, hydrophobic polyester polyols, such as hexamethylene adipate, and aliphatic diisocyanates, such as methylene bis(cyclohexyl isocyanate) (H12MDI) or isophorone diisocyanate (IPDI). These PUD s are at the more expensive end of the waterborne adhesive market but provide excellent performance. [Pg.788]

Dow ABS Nylon 6/6 Polycarbonate Polyethylene, HDPE, LDPE, LLDPE, ULDPE Polypropylene HPPP, CPPP Polystyrene HIPS, GPPS, Recycled, Advanced Styrenic Resin SAN Polyurethane Elastomers Polyolefin Plastomer PC/ABS Crystalline Polymer ABS/TPU... [Pg.628]

Linear polyurethanes, 26 Linear step-growth polymerizations, 13 Lipase-catalyzed polyesterifications, 83 Lipases, 82, 84 catalytic site of, 84 Liquefied MDIs, 211, 226-227 Liquid carbon dioxide, 206 Liquid-castable systems, 201 Liquid crystal devices (LCDs), alignment coating for, 269-270 Liquid crystalline aromatic polyesters, 35 Liquid crystalline polyesters, 25, 26, 48-53... [Pg.587]

The nature of the hard domains differs for the various block copolymers. The amorphous polystyrene blocks in the ABA block copolymers are hard because the glass transition temperature (100°C) is considerably above ambient temperature, i.e., the polystyrene blocks are in the glassy state. However, there is some controversy about the nature of the hard domains in the various multiblock copolymers. The polyurethane blocks in the polyester-polyurethane and polyether-polyurethane copolymers have a glass transition temperature above ambient temperature but also derive their hard behavior from hydrogen-bonding and low levels of crystallinity. The aromatic polyester (usually terephthalate) blocks in the polyether-polyester multiblock copolymer appear to derive their hardness entirely from crystallinity. [Pg.31]


See other pages where Polyurethane Crystalline is mentioned: [Pg.314]    [Pg.99]    [Pg.1332]    [Pg.314]    [Pg.99]    [Pg.1332]    [Pg.414]    [Pg.570]    [Pg.607]    [Pg.539]    [Pg.360]    [Pg.350]    [Pg.185]    [Pg.61]    [Pg.12]    [Pg.15]    [Pg.371]    [Pg.731]    [Pg.774]    [Pg.774]    [Pg.775]    [Pg.777]    [Pg.780]    [Pg.785]    [Pg.786]    [Pg.790]    [Pg.262]    [Pg.321]    [Pg.377]    [Pg.63]    [Pg.152]    [Pg.169]    [Pg.281]    [Pg.205]    [Pg.78]    [Pg.143]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



© 2024 chempedia.info