Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyunsaturated fatty acid dietary

Prostaglandins arise from unsaturated C20 carboxylic acids such as arachidonic acid (see Table 26 1) Mammals cannot biosynthesize arachidonic acid directly They obtain Imoleic acid (Table 26 1) from vegetable oils m their diet and extend the car bon chain of Imoleic acid from 18 to 20 carbons while introducing two more double bonds Lmoleic acid is said to be an essential fatty acid, forming part of the dietary requirement of mammals Animals fed on diets that are deficient m Imoleic acid grow poorly and suffer a number of other disorders some of which are reversed on feed mg them vegetable oils rich m Imoleic acid and other polyunsaturated fatty acids One function of these substances is to provide the raw materials for prostaglandin biosynthesis... [Pg.1080]

Fischer S Dietary polyunsaturated fatty acids and eicosanoid formation in humans. Adv Lipid Res 1989 23 169. [Pg.196]

Wamants N, van Oeckel M J and Boucque C V (1998), Effect of incorporation of dietary polyunsaturated fatty acids in pork back-fat on the quality of salami , Meat Sci, 49, 435 145. [Pg.177]

FIGURE 3-7 Pathways for the interconversion of brain fatty acids. Palmitic acid (16 0) is the main end product of brain fatty acid synthesis. It may then be elongated, desaturated, and/or P-oxidized to form different long chain fatty acids. The monoenes (18 1 A7, 18 1 A9, 24 1 A15) are the main unsaturated fatty acids formed de novo by A9 desaturation and chain elongation. As shown, the very long chain fatty acids are a-oxidized to form a-hydroxy and odd numbered fatty acids. The polyunsaturated fatty acids are formed mainly from exogenous dietary fatty acids, such as linoleic (18 2, n-6) and a-linoleic (18 2, n-3) acids by chain elongation and desaturation at A5 and A6, as shown. A A4 desaturase has also been proposed, but its existence has been questioned. Instead, it has been shown that unsaturation at the A4 position is effected by retroconversion i.e. A6 unsaturation in the endoplasmic reticulum, followed by one cycle of P-oxidation (-C2) in peroxisomes [11], This is illustrated in the biosynthesis of DHA (22 6, n-3) above. In severe essential fatty acid deficiency, the abnormal polyenes, such as 20 3, n-9 are also synthesized de novo to substitute for the normal polyunsaturated acids. [Pg.42]

Polyunsaturated fatty acids are characterized by a large number of C = C double bonds in their hydrocarbon chain. Stearic acid has no C = C double bonds and therefore is not unsaturated, let alone polyunsaturated. But eleostearic acid has three C = C double bonds and thus is polyunsaturated. Polyunsaturated fatty acids are recommended in dietary programs since saturated fats are linked to a high incidence of heart disease. Of the lipids listed in Table 28-2, safflower oil has the highest percentage of unsaturated fatty acids, predominately linoleic acid, an unsaturated fatty acid with two C=C bonds. [Pg.647]

Dietary polyunsaturated fatty acids (PUFAs), especially the n-3 series that are found in marine fish oils, modulate a variety of normal and disease processes, and consequently affect human health. PUFAs are classified based on the position of double bonds in their lipid structure and include the n-3 and n-6 series. Dietary n-3 PUFAs include a-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) whereas the most common n-6 PUFAs are linoleic acid, y-linolenic acid, and arachidonic acid (AA). AA is the primary precursor of eicosanoids, which includes the prostaglandins, leukotrienes, and thromboxanes. Collectively, these AA-derived mediators can exert profound effects on immune and inflammatory processes. Mammals can neither synthesize n-3 and n-6 PUFAs nor convert one variety to the other as they do not possess the appropriate enzymes. PUFAs are required for membrane formation and function... [Pg.192]

The diets were a measured, laboratory-controlled diet based on ordinary foods. Fats provided 30% of the dietary calories. Saturated to monounsaturated to polyunsaturated fatty acid ratios are listed below each test fat. [Pg.181]

Infants require a substantial supplementation of AA, which is normally supplied through breast milk. Almost 10% of the membrane phospholipid content of breast fed infants was found to be AA in one study (Koletzko et ah, 1996). A crucial factor of the developing infant brain is the amount and type of polyunsaturated fatty acids they receive from their diet. That is, the ratio of dietary n-3 fatty acids (those in which the unsaturation begins 3 carbons from the terminal carbon) to n-6 fatty acids can be optimized to... [Pg.66]

Essential fatty acid one of a family of polyunsaturated fatty acids that are essential dietary requirements. [Pg.392]

Although these are termed essential fatty acids, they are, in fact, precursors for the major polyunsaturated fatty acids that have essential roles in the body but are present only in small amounts in the diet. Linoleic acid is converted, via elongation and desaturation reactions, to dihomo-y-linolenic (20 3n-6) and then to arachidonic (20 4n-6) acid. a-Linolenic is converted to eicosapentaenoic (20 5n-3) and then docosahexae-noic (22 6n-3). The pathways for formation of these latter fatty acids, from their dietary precursors, are presented in Figures 11.11 and 11.12. Full details of one pathway are provided, as an example, in Appendix 11.4. For comparison of the two pathways, they are presented side by side in Figure 11.13. [Pg.233]

Approximately 60% of the dry weight of the brain is fat, a considerable proportion of which is polyunsaturated fatty acids that are present in plasma membranes. It would not be surprising if replacement of the unsaturated acids by the saturated fatly acids in membrane structure due to a dietary deficiency of polyunsaturated fatty acids played some part in development of mental illness. Indeed, it has been found that supplementation of a normal diet with polyunsaturated fatly acids can improve some mental disorder (see chapter 11). [Pg.324]

Birch, E.E., Garfield, S., Hoffman, D.R., Uauy, R., and Birch, D.G. (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42 174-181. [Pg.374]

Most insects have a dietary requirement for polyunsaturated fatty acids, usually linolenic acids, but the exact requirements appear to differ from species to species and few have been studied thoroughly (109). Moreover, the presence of certain fatty acids... [Pg.317]

Astorg, P. (2004). Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk A review of epidemiological and experimental evidence. Cancer Causes Control 15,367-386. [Pg.219]

Sea animals are rich in soluble dietary fibers, proteins, minerals, vitamins, antioxidants, phytochemicals, and polyunsaturated fatty acids, with low caloric value. Polysaccharides from marine animals have been reported to possess biological activities with potential medicinal values in addition to their current status as a source of dietary fibers and prebiotics. Moreover, they have a lot of dietary fiber, which lowers blood cholesterol, and iodine, which improves metabolism, vascular and cardiac action, body temperature, and perspiration regulation, and are effective in... [Pg.268]

Consumption of fats containing n-6 polyunsaturated fatty acids lowers plasma LDLs, but HDLs, which protect against coronary heart disease, are also lowered. Dietary n-3 polyunsaturated fats have little effect on plasma HDL or LDL levels, but they suppress cardiac arrhythmias and reduce serum triacylglycerols, decrease the tendency to thrombosis, and substantially reduce the risk of cardiovascular mortality. [Pg.500]

Scott, T. W., Cook, L. J. and Mills, S. C. 1971. Protection of dietary polyunsaturated fatty acids against microbial hydrogenation in ruminants. J. Am. Oil Chem. Soc. 48, 358-364. [Pg.212]

Certain polyunsaturated fatty acids are essential in the human diet (see Box 21-B). One of these, arachidonic acid (which may be formed from dietary linoleic acid), serves as a precursor for the formation of the hormones known as prostaglandins and a series of related prostanoids. Lipids of animal origin also... [Pg.381]

The conversion of oleoyl-CoA to linoleoyl-CoA is accomplished by some insects118 but does not take place in most animals. As a result of this biosynthetic deficiency, polyunsaturated fatty acids such as linoleic, linolenic, and the C20 arachidonic acid are necessary in the diet (Box 21-B). One essential function of linoleic acid is to serve as a precursor of prostaglandins and related prostanoids (Section D). Dietary linoleate is converted to its Co A derivative and then by sequential A6 desaturation,119 elongation, and then A5 desaturation, to the 20 4 (A5 8 11 14) arachidonoyl-CoA (Fig. 21-2, lower right). These acids are referred to as 0)6 because of the position of the last double bond. Linolenic acid can be converted in an analogous fashion to the CoA derivative of the 20 5 (A5 8 11 14 17 co6) eicosapentaenoic acid (EPA). The 22 6 docasahexaenoic acid (DHA Fig. 21-2) is apparently formed by elongation of the 22 5 acyl-CoA to 24 5, desaturation, transfer to a peroxisome or mitochondrion, and p oxidation to shorten the chain.953... [Pg.1193]

PTFE polytetrafluoroethylene PUFA polyunsaturated fatty acid PV peroxide value PVDF polyvinylidene difluoride PVP polyvinylpyrrolidone PVPP polyvinylpolypyrolidone RAS retronasal aroma stimulator RDA recommended dietary allowance RF radio frequency RFI relative fluorescence intensity RI retention index RNU relative nitrogen utilization ROESY rotational nuclear Overhauser enhancement spectroscopy RP-HPLC reversed-phase HPLC RPER relative protein efficiency ratio RS resistant starch RT retention time RVP relative vapor pressure S sieman (unit of conductance)... [Pg.1309]


See other pages where Polyunsaturated fatty acid dietary is mentioned: [Pg.135]    [Pg.91]    [Pg.1080]    [Pg.241]    [Pg.111]    [Pg.190]    [Pg.227]    [Pg.271]    [Pg.157]    [Pg.25]    [Pg.203]    [Pg.186]    [Pg.107]    [Pg.267]    [Pg.156]    [Pg.219]    [Pg.128]    [Pg.372]    [Pg.409]    [Pg.33]    [Pg.154]    [Pg.212]    [Pg.62]    [Pg.265]    [Pg.89]    [Pg.361]    [Pg.368]    [Pg.370]    [Pg.1087]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Acid, dietary

Dietary polyunsaturated

Polyunsaturated

Polyunsaturated acids

Polyunsaturated fatty acids

© 2024 chempedia.info