Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization reactions tank reactor

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]

In this work, the characteristic "living" polymer phenomenon was utilized by preparing a seed polymer in a batch reactor. The seed polymer and styrene were then fed to a constant flow stirred tank reactor. This procedure allowed use of the lumped parameter rate expression given by Equations (5) through (8) to describe the polymerization reaction, and eliminated complications involved in describing simultaneous initiation and propagation reactions. [Pg.297]

The TIS and DPF models, introduced in Chapter 19 to describe the residence time distribution (RTD) for nonideal flow, can be adapted as reactor models, once the single parameters of the models, N and Pe, (or DL), respectively, are known. As such, these are macromixing models and are unable to account for nonideal mixing behavior at the microscopic level. For example, the TIS model is based on the assumption that complete backmixing occurs within each tank. If this is not the case, as, perhaps, in a polymerization reaction that produces a viscous product, the model is incomplete. [Pg.495]

Polymerizations were carried out in a jacketed, 1-gal, stirred, pressure tank reactor. Typical reactions were run by adding water, alcohol, or chain transfer agent, phosphate buffer, and persulfate to the reactor. The reactor was pressurized with CTFE monomer. Sulfite solution was fed at a rate to maintain reaction. Copper and iron ions were used at times as catalysts by adding cupric sulfate or ferrous sulfate.3 The product was filtered, washed with 90 10 water methanol followed with deionized water. The product was dried at 110°C. [Pg.82]

A bnlk polymerization reactor can be as simple as a tube into which the reactants are fed and from which the polymer mixture emerges at the end it can be more of a traditional, continnons stirred-tank reactor (CSTR), or even a high-pressure autoclave-type reactor (see Figure 3.21). A bulk polymerization process need not be continuous, but it should not be confnsed with a batch reaction. There can be batch bnlk polymerizations jnst as there are continnons bulk polymerizations processes. [Pg.256]

A continuous bulk polymerization process with three reaction zones in series has been developed. The degree of polymerization increases from the first reactor to the third reactor. Examples of suitable reactors include continuous stirred tank reactors, stirred tower reactors, axially segregated horizontal reactors, and pipe reactors with static mixers. The continuous stirred tank reactor type is advantageous, because it allows for precise independent control of the residence time in a given reactor by adjusting the level in a given reactor. Thus, the residence time of the polymer mixtures can be independently adjusted and optimized in each of the reactors in series (8). [Pg.271]

As in any type of polymerization, a batch reaction is not as commercially attractive as a continuous polymerization process that can produce larger quantities of polymer in the same amount of time. The first continuous polymerizations in C02 were reported (Charpentier et al., 1999) with the monomers acrylic acid and vinylidene fluoride. The vinylidene fluoride polymerization was extensively studied at 75 °C, 275 bar. The polymerizations were run with residence times that varied between 15 and 40 min in a continuous-stirred-tank reactor before collection in a filter. The maximum rate of polymerization was determined to be 19 x 10 5 mol L-1s-1. Future research will move toward continuous removal of polymer, recycling of unreacted monomer and C02, and expansion to other monomers. [Pg.154]

The use of a precision digital density meter as supplied by Mettler Instruments (Anton Paar, Ag.) appeared attractive. Few references on using density measurements to follow polymerization or other reactions appear in the literature. Poehlein and Dougherty (2) mentioned, without elaboration, the occasional use of y-ray density meters to measure conversion for control purposes in continuous emulsion polymerization. Braun and Disselhoff (3) utilized an instrument by Anton Paar, Ag. but only in a very limited fashion. More recently Rentsch and Schultz(4) also utilized an instrument by Anton Paar, Ag. for the continuous density measurement of the cationic polymerization of 1,3,6,9-tetraoxacycloundecane. Ray(5) has used a newer model Paar digital density meter to monitor emulsion polymerization in a continuous stirred tank reactor train. Trathnigg(6, 7) quite recently considered the solution polymerization of styrene in tetrahydrofuran and discusses the effect of mixing on the reliability of the conversion data calculated. Two other references by Russian authors(8,9) are known citing kinetic measurements by the density method but their procedures do not fulfill the above stated requirements. [Pg.344]

Emulsion Polymerization in a CSTR. Emulsion polymerization is usually carried out isothermally in batch or continuous stirred tank reactors. Temperature control is much easier than for bulk or solution polymerization because the small (. 5 Jim) polymer particles, which are the locus of reaction, are suspended in a continuous aqueous medium as shown in Figure 5. This complex, multiphase reactor also shows multiple steady states under isothermal conditions. Gerrens and coworkers at BASF seem to be the first to report these phenomena both computationally and experimentally. Figure 6 (taken from ref. (253)) plots the autocatalytic behavior of the reaction rate for styrene polymerization vs. monomer conversion in the reactor. The intersection... [Pg.122]

In addition to the patent literature available on the production of BR in the gas-phase there is some scientific literature which mainly refers to the modeling of reaction kinetics. Details on the experimental procedure for the determination of the macroscopic kinetics of the Nd-mediated gas-phase polymerization of BD in a stirred-tank reactor are reported [568,569]. Special emphasis is given to video microscopy of individual supported catalyst particles, individual particle growth and particle size distribution (PSD). These studies reveal that individual particles differ in polymerization activity [536,537,570,571]. Reactor performance and PSD are modeled on the... [Pg.97]

The rational design of a reaction system to produce a desired polymer is more feasible today by virtue of mathematical tools which permit one to predict product distribution as affected by reactor type and conditions. New analytical tools such as gel permeation chromatography are beginning to be used to check technical predictions and to aid in defining molecular parameters as they affect product properties. The vast majority of work concerns bulk or solution polymerization in isothermal batch or continuous stirred tank reactors. There is a clear need to develop techniques to permit fuller application of reaction engineering to realistic nonisothermal systems, emulsion systems, and systems at high conversion found industrially. A mathematical framework is also needed which will start with carefully planned experimental data and efficiently indicate a polymerization mechanism and statistical estimates of kinetic constants rather than vice-versa. [Pg.18]

Batch Reactors. One of the classic works in this area is by Gee and Melville (21), based on the PSSA for chain reaction with termination. Realistic mechanisms of termination, disproportionation, and combination, are treated with a variety of initiation kinetics, and analytical solutions are obtained. Liu and Amundson (37) solved the simultaneous differential equations for batch and transient stirred tank reactors by using digital computer without the PSSA. The degree of polymerization was limited to 100 the kinetic constants used were not typical and led to radical lifetimes of hours and to the conclusion that the PSSA is not accurate in the early stages of polymerization. In 1962 Liu and Amundson used the generating function approach and obtained a complex iterated integral which was later termed inconvenient for computation (37). The example treated was monomer termination. [Pg.31]

Since mixing and good heat transfer are of vital importance in viscous polymerization reactions, a mechanically agitated continuous stirred-tank reactor is widely used in polymerization processes. Solution polymerization, emulsion polymerization, and solid-catalyzed olefin polymerization are all carried out in a mechanically agitated slurry reactor. [Pg.143]


See other pages where Polymerization reactions tank reactor is mentioned: [Pg.280]    [Pg.517]    [Pg.254]    [Pg.31]    [Pg.32]    [Pg.166]    [Pg.295]    [Pg.295]    [Pg.297]    [Pg.581]    [Pg.329]    [Pg.336]    [Pg.139]    [Pg.406]    [Pg.74]    [Pg.101]    [Pg.549]    [Pg.26]    [Pg.145]    [Pg.95]    [Pg.200]    [Pg.528]    [Pg.529]    [Pg.434]    [Pg.547]    [Pg.254]    [Pg.94]    [Pg.393]    [Pg.395]    [Pg.267]    [Pg.21]    [Pg.149]    [Pg.186]    [Pg.175]    [Pg.166]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Polymerization reaction

Polymerization reactions reactor

Polymerization reactions stirred tank reactor

Reaction tanks

Reactors reaction

Tank reactor

Tank reactor reaction

Tank reactor reactors

© 2024 chempedia.info