Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macroscopic Kinetics

We understand very well that any book inavoidably reflects authors interests and scientific taste this fact is, first of all, usually seen in the selection of material which in our case is very plentiful and diverse. For instance, Chapter 2 gives examples of different general approaches used in chemical kinetics (macroscopic, mesoscopic and microscopic) and numerous methods for solving particular problems. We focus here on the microscopic approach based on the concept of active particles (structure elements, reactants, defects) whose spatial redistribution arises due to their diffusion affected by... [Pg.2]

Mass action kinetics macroscopic and microscopic approach... [Pg.1]

Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction). Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction).
Predicting the solvent or density dependence of rate constants by equation (A3.6.29) or equation (A3.6.31) requires the same ingredients as the calculation of TST rate constants plus an estimate of and a suitable model for the friction coefficient y and its density dependence. While in the framework of molecular dynamics simulations it may be worthwhile to numerically calculate friction coefficients from the average of the relevant time correlation fiinctions, for practical purposes in the analysis of kinetic data it is much more convenient and instructive to use experimentally detemiined macroscopic solvent parameters. [Pg.849]

The solution to the usual macroscopic kinetic rate equations for the reactant and product concentrations yields... [Pg.885]

One of the primary goals of current research in the area of tribology is to understand how it is that the kinetic energy of a sliding object is converted into internal energy. These dissipation mechanisms detennine the rate of energy flow from macroscopic motion into the microscopic modes of the system. Numerous mechanisms can be... [Pg.2744]

The concept of macroscopic kinetics avoids the difficulties of microscopic kinetics [46, 47] This method allows a very compact description of different non-thennal plasma chemical reactors working with continuous gas flows or closed reactor systems. The state of the plasma chemical reaction is investigated, not in the active plasma zone, but... [Pg.2810]

Using the coordinates of special geometries, minima, and saddle points, together with the nearby values of potential energy, you can calculate spectroscopic properties and macroscopic therm ody-riatriic and kinetic parameters, sncfi as enthalpies, entropies, and thermal rate constants. HyperChem can provide the geometries and energy values for many of these ealeulatiori s. [Pg.32]

The concentration [MB] constantly experiences tiny fluctuations, the duration of which can determine linewidths. It is also possible to adopt a traditional kinetic viewpoint and measure the time course of such spontaneous fluctuations directly by monitoring the time-varying concentration in an extremely small sample (6). Spontaneous fluctuations obey exactly the same kinetics of return to equiUbrium that describe relaxation of a macroscopic perturbation. Normally, fluctuations are so small they are ignored. The relative ampHtude of a fluctuation is inversely proportional to the square root of the number of AB entities being observed. Consequently, fluctuations are important when concentrations are small or, more usehiUy, when volumes are tiny. [Pg.513]

Mechanisms. Mechanism is a technical term, referring to a detailed, microscopic description of a chemical transformation. Although it falls far short of a complete dynamical description of a reaction at the atomic level, a mechanism has been the most information available. In particular, a mechanism for a reaction is sufficient to predict the macroscopic rate law of the reaction. This deductive process is vaUd only in one direction, ie, an unlimited number of mechanisms are consistent with any measured rate law. A successful kinetic study, therefore, postulates a mechanism, derives the rate law, and demonstrates that the rate law is sufficient to explain experimental data over some range of conditions. New data may be discovered later that prove inconsistent with the assumed rate law and require that a new mechanism be postulated. Mechanisms state, in particular, what molecules actually react in an elementary step and what products these produce. An overall chemical equation may involve a variety of intermediates, and the mechanism specifies those intermediates. For the overall equation... [Pg.514]

In electrode kinetics a relationship is sought between the current density and the composition of the electrolyte, surface overpotential, and the electrode material. This microscopic description of the double layer indicates how stmcture and chemistry affect the rate of charge-transfer reactions. Generally in electrode kinetics the double layer is regarded as part of the interface, and a macroscopic relationship is sought. For the general reaction... [Pg.64]

The concept of corresponding states was based on kinetic molecular theory, which describes molecules as discrete, rapidly moving particles that together constitute a fluid or soHd. Therefore, the theory of corresponding states was a macroscopic concept based on empirical observations. In 1939, the theory of corresponding states was derived from an inverse sixth power molecular potential model (74). Four basic assumptions were made (/) classical statistical mechanics apply, (2) the molecules must be spherical either by actual shape or by virtue of rapid and free rotation, (3) the intramolecular vibrations are considered identical for molecules in either the gas or Hquid phases, and (4) the potential energy of a coUection of molecules is a function of only the various intermolecular distances. [Pg.239]

Equation 6-10 is the macroscopic energy balance equation, in which potential and kinetic energy terms are neglected. From tliermodynamics, the enthalpy per unit mass is expressed as... [Pg.431]

Pilot plant experiments represent an essential step in the investigation of a process toward formulating specifications for a commercial plant. A pilot plant uses the microkinetic data derived by laboratory tests and provides information about the macro kinetics of a process. Examples include the interaction of large conglomerates of molecules, macroscopic fluid elements, the effects of the macroscopic streams of materials and energy on the process, as well as the true residence time in the full-scale plant. [Pg.1035]

Kinetic theories of adsorption, desorption, surface diffusion, and surface reactions can be grouped into three categories. (/) At the macroscopic level one proceeds to write down kinetic equations for macroscopic variables, in particular rate equations for the (local) coverage or for partial coverages. This can be done in a heuristic manner, much akin to procedures in gas-phase kinetics or, in a rigorous approach, using the framework of nonequihbrium thermodynamics. Such an approach can be used as long as... [Pg.439]

If it cannot be guaranteed that the adsorbate remains in local equilibrium during its time evolution, then a set of macroscopic variables is not sufficient and an approach based on nonequihbrium statistical mechanics involving time-dependent distribution functions must be invoked. The kinetic lattice gas model is an example of such a theory [56]. It is derived from a Markovian master equation, but is not totally microscopic in that it is based on a phenomenological Hamiltonian. We demonstrate this approach... [Pg.462]

There are cases where non-regular lattices may be of advantage [36,37]. The computational effort, however, is substantially larger, which makes the models less flexible concerning changes of boundary conditions or topological constraints. Another direction, which may be promising in the future, is the use of hybrid models, where for example local attachment kinetics are treated on a microscopic atomistic scale, while the transport properties are treated by macroscopic partial differential equations [5,6]. [Pg.859]

As is well recognized, various macroscopic properties such as mechanical properties are controlled by microstructure, and the stability of a phase which consists of each microstructure is essentially the subject of electronic structure calculation and statistical mechanics of atomic configuration. The main subject focused in this article is configurational thermodynamics and kinetics in the atomic level, but we start with a brief review of the stability of microstructure, which also poses the configurational problem in the different hierarchy of scale. [Pg.83]

Macroscopic heterogeneities, e.g. crevices, discontinuities in surface films, bimetallic contacts etc. will have a pronounced effect on the location and the kinetics of the corrosion reaction and are considered in various sections throughout this work. Practical environments are shown schematically in Fig. 1.3, which also serves to emphasise the relationship between the detailed structure of the metal, the environment, and external factors such as stress, fatigue, velocity, impingement, etc. [Pg.11]

In this section the interaction of a metal with its aqueous environment will be considered from the viewpoint Of thermodynamics and electrode kinetics, and in order to simplify the discussion it will be assumed that the metal is a homogeneous continuum, and no account will be taken of submicroscopic, microscopic and macroscopic heterogeneities, which are dealt with elsewhere see Sections 1.3 and 20.4). Furthermore, emphasis will be placed on uniform corrosion since localised attack is considered in Section 1.6. [Pg.55]

Thirdly, strong solvent co-intercalation, in particular into internal van der Waals gaps, can only be expected for kinetically stable ternary compounds Li solv) Cn. For example, comparison of DMC and DEC with dimethoxyethane (DME), shows that the kinetic stability of Li>.(DME)yCn can be considered much higher than that of LiJr(DMC)vC and LiJt(DEC)yC and of course Liy(EC)yCn [169]. With EC/DME, solvent co-intercalation proceeds on a macroscopic scale, i.e., the external van der Waals gaps and some internal ones can participate in the solvent co-... [Pg.397]

Introduction.—Statistical physics deals with the relation between the macroscopic laws that describe the internal state of a system and the dynamics of the interactions of its microscopic constituents. The derivation of the nonequilibrium macroscopic laws, such as those of hydrodynamics, from the microscopic laws has not been developed as generally as in the equilibrium case (the derivation of thermodynamic relations by equilibrium statistical mechanics). The microscopic analysis of nonequilibrium phenomena, however, has achieved a considerable degree of success for the particular case of dilute gases. In this case, the kinetic theory, or transport theory, allows one to relate the transport of matter or of energy, for example (as in diffusion, or heat flow, respectively), to the mechanics of the molecules that make up the system. [Pg.1]


See other pages where Macroscopic Kinetics is mentioned: [Pg.691]    [Pg.733]    [Pg.834]    [Pg.884]    [Pg.885]    [Pg.887]    [Pg.928]    [Pg.2709]    [Pg.2810]    [Pg.20]    [Pg.481]    [Pg.325]    [Pg.396]    [Pg.513]    [Pg.633]    [Pg.1903]    [Pg.201]    [Pg.440]    [Pg.477]    [Pg.111]    [Pg.112]    [Pg.101]    [Pg.494]    [Pg.118]    [Pg.118]    [Pg.241]   
See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Emulsion macroscopic kinetics

From kinetic measurements macroscopic description

Kinetic energy macroscopic

Kinetic processes macroscopic, deterministic kinetics

Macroscopic reactor kinetics

Macroscopic spreading kinetics

Macroscopic topics chemical kinetics

Macroscopic, Deterministic Chemical Kinetics

Mass action kinetics macroscopic and microscopic approach

Radical macroscopic kinetics

© 2024 chempedia.info