Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization other vinyl monomers

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Allyl alcohol, CH2=CH—CH2OH (2-propen-l-ol) [107-18-6] is the simplest unsaturated alcohol. One hydrogen atom can easily be abstracted from the aHyhc methylene (—CH2—) to form a radical. Since the radical is stabilized by resonance with the C=C double bond, it is very difficult to get high molecular weight polymers by radical polymerization. In spite of the fact that aHyl alcohol has been produced commercially for some years (1), it has not found use as a monomer in large volumes as have other vinyl monomers. [Pg.71]

Polymerization and Spinning Solvent. Dimethyl sulfoxide is used as a solvent for the polymerization of acrylonitrile and other vinyl monomers, eg, methyl methacrylate and styrene (82,83). The low incidence of transfer from the growing chain to DMSO leads to high molecular weights. Copolymerization reactions of acrylonitrile with other vinyl monomers are also mn in DMSO. Monomer mixtures of acrylonitrile, styrene, vinyUdene chloride, methallylsulfonic acid, styrenesulfonic acid, etc, are polymerized in DMSO—water (84). In some cases, the fibers are spun from the reaction solutions into DMSO—water baths. [Pg.112]

This photoinitiating system is also used for the polymerization of other vinyl monomers such as styrene (St), acrylonitrile (AN), and vinylacetate (VA). The efficiency of photoinitiation by this system follows the order ... [Pg.251]

The polymerization of vinyl chloride monomer, in common with other vinyl monomers, proceeds by a free-radical mechanism involving the usual steps of initiation, propagation, and termination. Poly(vinyl chloride) is formed in a regular head-to-tail manner Eq. (1) [3-6]. [Pg.318]

Grafting presents a means of modifying the cellulose molecule through the creation of branches of synthetic polymers, which impart to the cellulose certain desirable properties without destroying the properties of cellulose. The polymerization of vinyl monomers may be initiated by free radicals or by certain ions. Depending on the monomer, one or the other type of initiation may be preferred. The grafting process depends on the reactivity of the monomer used, the type of initiation, and cellulose accessibility [1,2]. [Pg.529]

For example, the molecular weight of unsaturated polyesters is controlled to less than 5000 g/mol. The low molecular weight of the unsaturated polyester allows solvation in vinyl monomers such as styrene to produce a low-viscosity resin. Unsaturated polyesters are made with monomers containing carbon-carbon double bonds able to undergo free-radical crosslinking reactions with styrene and other vinyl monomers. Crosslinking the resin by free-radical polymerization produces the mechanical properties needed in various applications. [Pg.4]

To be eligible to living anionic polymerization a vinylic monomer should carry an electron attracting substituent to induce polarization of the unsaturation. But it should contain neither acidic hydrogen, nor strongly electrophilic function which could induce deactivation or side reactions. Typical examples of such monomers are p-aminostyrene, acrylic esters, chloroprene, hydroxyethyl methacrylate (HEMA), phenylacetylene, and many others. [Pg.149]

Natural rubber latex, obtained from rubber trees, is converted to its final form by a process known as vulcanization, first discovered by Charles Goodyear in 1839. Vulcaiuzation is basically a crosslinking reaction of double bonds in the latex structure with sulfur. The polymerization of butadiene with itself or with other vinyl monomers results in a material that like natural latex, still contains double bonds. Thus, synthetic rubber made from butadiene can be processed and vulcanized just like natural rubber. [Pg.135]

Other catalytic reactions involving a transition-metal allenylidene complex, as catalyst precursor or intermediate, include (1) the dehydrogenative dimerization of tributyltin hydride [116], (2) the controlled atom-transfer radical polymerization of vinyl monomers [144], (3) the selective transetherification of linear and cyclic vinyl ethers under non acidic conditions [353], (4) the cycloisomerization of (V2V-dia-llyltosylamide into 3-methyl-4-methylene-(V-tosylpyrrolidine [354, 355], and (5) the reduction of protons from HBF4 into dihydrogen [238]. [Pg.202]

Natta, a consultant for the Montecatini company of Milan, Italy, applied the Zeigler catalysts to other vinyl monomers such as propylene and found that the polymers were of higher density, higher melting, and more linear than those produced by the then classical techniques such as free-radical-initiated polymerization. Ziegler and Natta shared the Nobel Prize in 1963 for their efforts in the production of vinyl polymers using what we know today as solid state stereoregulating catalysts. [Pg.154]

For reasons of simplicity, the polymers discussed so far are related to polyethylene and are usually produced by a chain reaction polymerization of vinyl monomers. Like other chain reactions, the polymerization requires three steps, i.e., initiation, propagation, and termination. Additional information... [Pg.11]

Nuclear magnetic resonance (NMR) spectroscopy is a most effective and significant method for observing the structure and dynamics of polymer chains both in solution and in the solid state [1]. Undoubtedly the widest application of NMR spectroscopy is in the field of structure determination. The identification of certain atoms or groups in a molecule as well as their position relative to each other can be obtained by one-, two-, and three-dimensional NMR. Of importance to polymerization of vinyl monomers is the orientation of each vinyl monomer unit to the growing chain tacticity. The time scale involved in NMR measurements makes it possible to study certain rate processes, including chemical reaction rates. Other applications are isomerism, internal relaxation, conformational analysis, and tautomerism. [Pg.83]

Since the sensitivity towards water in many organic reactions lies in the order carbanion > carbonium ion > free radical, it appears likely that as water is progressively removed from a-methylstyrene—and, perhaps, other vinyl monomers—the free radical propagation is augmented or supplanted by a carbonium ion mechanism, which, in turn, is further enhanced at low water content, by a carbanion mechanism. Under the latter conditions, one would expect a termination mechanism which is bimolecular with regard to the total concentration of propagating species and hence a square-root dependence of the polymerization rate on the dose rate. This is the order dependence observed in a-methylstyrene at the highest polymerization rates and lowest water content. [Pg.191]

Vinyl Chloride. A second process by which petroleum-derived ethylene may be employed in the production of polymeric products is by conversion to vinyl chloride and subsequent polymerization or copolymerization with other vinyl monomers. The process involves the reaction of ethylene with chlorine followed by catalytic dehydrochlorination of ethylene dichloride. [Pg.313]

This observation has been used by Kargin, and Plate (127) who initiated polymerization and grafting with the help of mechanically disrupted inorganic materials. Many metals, oxides, and salts which never normally act as initiators, when mechanically disrupted, are able to initiate polymerization of styrene, methyl methacrylate, acrylonitrile, and other vinyl monomers. The surface of the active inorganic substance can also be used as a site for grafting to already existing polymer chains if joint dispersion of polymer and monomer, such as cellulose and styrene, is performed. [Pg.140]

ZIEGLER-NATTA POLYMERIZATION. Polymerization of vinyl monomers under mild conditions using aluminum alkyls and TiCL lor other transition element halide) catalyst to give a stereoregulated, or tactic, polymer. These polymers, in which the stereochemistry of the chain is not random have very useful physical properties. [Pg.1774]

Other examples of the use of electron acceptors whose ion radicals are unstable with respect to fragmentation to an anion and a radical capable of initiation of polymerization were provided by Eaton (63,101,102). It was shown that -nitrobenzyl halides could be used in dye-sensitized compositions of semiconductor pigments such as Ti02 and CdS to induce polymerization of vinyl monomers using visible light. The sequence of events is outlined in eqs. 46-49 and Scheme 6 ... [Pg.477]

The solution thus consists of different particles denoted as contact ion pairs, solvent-separated ion pairs and free ions. The fraction of the individual particles depends on the type of salt, type of solvent, polymerization system, temperature, and salt concentration. The catalytic effect of these particles may be very different as is evident in anionic polymerization of vinyl monomers. For instance, free polystyryl anion is 800times more reactive than its ion pair with the sodium counterion 60 . From this fact it follows that, although the portion of free ions is small in the reaction system, they may play an important role. On the other hand, anionic polymerization and copolymerization of heterocycles proceeds mostly via ion pairs. This is due to a strong localization of the negative charge on the chain-end heteroatom which strongly stabilizes the ion pair itself62. Ionic dissociation constants and ion contributions to the reaction kinetics are usually low. This means that for heterocycles the difference between the catalytic effect of ion pairs and free ions is much weaker than for the polymerization of unsaturated compounds. This is well documented by the copolymerization of anhydrides with epoxides where the substi-... [Pg.103]

We consider styrene homopolymerization by a free-radical mechanism. Styrene, like any other vinyl monomer, is bifunctional, because the double bond opens two arms in the polymerization processs (one of the carbons is attacked by a free radical, activating the other carbon atom, which may continue to propagate the chain). [Pg.116]


See other pages where Polymerization other vinyl monomers is mentioned: [Pg.23]    [Pg.412]    [Pg.197]    [Pg.246]    [Pg.246]    [Pg.28]    [Pg.175]    [Pg.217]    [Pg.219]    [Pg.89]    [Pg.122]    [Pg.664]    [Pg.4]    [Pg.126]    [Pg.60]    [Pg.224]    [Pg.88]    [Pg.83]    [Pg.459]    [Pg.109]    [Pg.283]    [Pg.285]    [Pg.116]    [Pg.1446]    [Pg.238]    [Pg.246]    [Pg.77]    [Pg.429]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Monomers, polymerization

Other Polymerizations

Polymerization vinylic

Vinyl monome

Vinyl monomer

Vinyl monomers polymerization

Vinyl polymerization

Vinylic monomers

© 2024 chempedia.info