Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituents electron-attracting

Benzonitriles absorb at 2240-2220 cm The intensity of this band is quite variable and depends on the nature of substituents. Electron attracting groups such as nitro groups decrease the band intensity and increase the frequency, whereas electron donating groups such as amino groups increase the intensity and decrease the frequency. The frequencies and the log of the intensity A have been correlated with Hammett a values. ... [Pg.239]

Carboxylic acids are weak acids and m the absence of electron attracting substituents have s of approximately 5 Carboxylic acids are much stronger acids than alcohols because of the electron withdrawing power of the carbonyl group (inductive effect) and its ability to delocalize negative charge m the carboxylate anion (resonance effect)... [Pg.821]

This basic reactivity pattern is not greatiy affected by the presence of a 1- or 2- substituent, although electron-attracting substituents do diminish the reactivity. The pattern for substitution in 3-substituted indoles can be compHcated by the fact that the electrophile may preferentially attack the 3-position, even when it is already substituted. When this is the case, migration of either the new or the original substituent to C-2 may occur. [Pg.84]

The Bart reaction is successful with a wide variety of aromatic and heterocycHc amines. A variation in which an aromatic amine, in the presence of arsenic trichloride, is dia2oti2ed in an organic solvent (the ScheUer reaction) has also found wide appHcation. Both arsonic and arsinic acids can be prepared by the ScheUer reaction which often gives better yields than the Bart reaction with electron-attracting substituents on the aromatic ring. For the commercial preparation of 4-aminophenylarsonic acid [98-50-0] (arsaniUc acid), C HgAsNO, and 4-hydroxyphenylarsonic acid [98-14-6] C H AsO, the Bnchamp reaction is used ... [Pg.338]

Electron-attracting substituents in the coupling components such as halogen, nitro, sulfo, carboxyl, and carbonyl, are deactivating and tend to retard coupling. [Pg.428]

Potassium t-butoxide in t-butyl alcohol requires powerful electron-attracting substituents at C-4 to effect ring opening of pyrazoles but sodamide does not (Scheme 26) (B-76MI40402). As the key to the transformation is the generation of the anion, similar results were obtained by heating some pyrazole-3-carboxylic acids with quinoline. [Pg.245]

In some cases, especially in the presence of strongly electron attracting substituents, isomerization to acid amides has been observed, probably preceded by deprotonation at ring carbon. Even (56), known for its stability towards common alkali, undergoes this rearrangement when a lithium amide is used as the base (80JOC1489). [Pg.208]

Photochemically produced chloromethoxycarbene revealed ambiphilicity. Relative rates of cyclopropanation showed that electron donating as well as electron attracting substituents favor the reaction (Scheme 2) (79JA4736). [Pg.227]

Bicyclo[3.3.1]nonan-9-one is another ketone that exhibits interesting stereoselectivity. Reduction by hydride donors is preferentially syn to electron-attracting substituents at C-5 (X = EWG in the structure shown below) and anti to electron-releasing substituents (X = ERG below). These effects are observed even for differentially substituted phenyl... [Pg.174]

In the bromination of styrene, a po-+ plot is noticeably curved. If the extremes of the curves are taken to represent straight lines, the curve can be resolved into two Hammett relationships with p = —2.8 for electron-attracting substituents and p = —4.4 for electron-releasing substituents. When the corresponding -methylstyrenes are examined, a similarly curved ap plot is obtained. Furthermore, the stereospecificity of the reaction in the case of the -methylstyrenes varies with the aryl substituents. The reaction is a stereoespecific anti addition for strongly electron-attracting substituents but becomes only weakly stereoselective for electron-releasing substituents, e.g., 63% anti, 37% syn, forp-methoxy. Discuss the possible mechanistic basis for the Hammett plot curvature and its relationship to the stereochemical results. [Pg.403]

There are two opposing substituent effects on this reaction. Electron-attracting aiyl substituents favor the deprotonation but disfavor the elimination step. The observed substituent effects are small, and under some conditions the Hammett plot is nonlinear. [Pg.456]

The rates of both formation and hydrolysis of dimethyl acetals of -substituted benzaldehydes are substituent-dependent. Do you expect to increase or decrease with increasing electron-attracting capacity of the pam substituent Do you expect the Ahydroi to increase or decrease with the electron-attracting power of the substituent How do you expect K, the equilibrium constant for acetal formation, to vary with the nature of the substituent ... [Pg.506]

The same conclusions are drawn by analysis of the frontier orbitals involved in cycloadditions. For the most common case of the Diels-Alder reaction, which involves dienophiles with electron-attracting substituents, the frontier orbitals are l/2 of the diene (which is the HOMO) and n of the dienophile (which is the LUMO). Reaction occurs by interaction of the HOMO and LUMO, which can be seen from the illustration below to be allowed. [Pg.640]

It has long been known that the Diels-Alder reaction is particularly efficient and rapid when the dienophile contains one or more electron-attracting groups. These substituent effects are illustrated by the data in Table 11.3. In the case of the diene, reactivity is increased by electron-releasing substituents. Some illustrative data are given in Table 11.4. [Pg.641]

The stabilizing role of other functional groups can also be described in resonance terms. Both electron-attracting groups such as carbonyl and cyano and electron-donating groups such as methoxy and dimethylamino have a stabilizing etfect on a radical intermediate at an adjacent carbon. The resonance structures which depict these interactions indicate delocalization of the unpaired electron onto the adjacent substituents ... [Pg.693]

Radicals are particularly strongly stabilized when both an electron-attracting and an electron-donating substituent are present at the radical site. This has been called mero-stabilization" or " capto-dative stabilization. This type of stabilization results from mutual reinforcement of the two substituent effects. Scheme 12.3 gives some information on the stability of this type of radical. [Pg.694]

The reaction is particularly effective with alkenes with electron-attracting substituents such as diethyl maleate. When the reaction is conducted thermally with a peroxide initiator at 160°C, the product mixture is much more complex ... [Pg.735]


See other pages where Substituents electron-attracting is mentioned: [Pg.54]    [Pg.585]    [Pg.595]    [Pg.54]    [Pg.585]    [Pg.595]    [Pg.200]    [Pg.150]    [Pg.82]    [Pg.107]    [Pg.196]    [Pg.290]    [Pg.426]    [Pg.427]    [Pg.276]    [Pg.306]    [Pg.62]    [Pg.34]    [Pg.213]    [Pg.214]    [Pg.258]    [Pg.271]    [Pg.282]    [Pg.362]    [Pg.476]    [Pg.476]    [Pg.477]    [Pg.557]    [Pg.558]    [Pg.561]    [Pg.574]    [Pg.587]    [Pg.590]    [Pg.701]    [Pg.702]    [Pg.730]   
See also in sourсe #XX -- [ Pg.24 , Pg.75 ]




SEARCH



Electron substituents

Substituent groups electron-attracting

© 2024 chempedia.info