Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer cleaning

Metal ion-imprinted polymers can be applied to the pre-concentration and the sample clean-up stages for metal ion determinations. Most elemental techniques such ICP-AES and ICP-MS suffer from the difficulties imposed by complex matrices that produce high dissolved salt concentrations. The use of imprinted resins for selective extraction of metal ions allows these methods to be used with greater flexibility and can significantly lower detection limits. The selectivity of some imprinted resins has been sufficient to allow selective and sensitive analyses of metal ions at ultra-trace levels using simpler and less expensive detection methods. By reducing the detection step to a simple colorimetric method, economy and simplicity are assured. The combination of imprinted polymer clean-up and colorimetric detection are attractive as the basis of an FIA system for the ultra-trace analysis of a specific metal or combination of metals. [Pg.462]

A.M. Ellison, W.A. Zisman, J. Phys. Chem. 58 (1954) 503 SD, polymers cleaned with Tide detergent solution, thoroughly rinsed with water, and finally dried in air at 75°C. [Pg.731]

The cumulative operational knowledge of Petrokemya (SABIC affiliate) was a significant factor in increasing the over all plant operational efficiency, in that downtime for polymer cleaning was reduced. As a result of all these steps, the plant s capacity has recently been improved to about 8% over its design capacity. [Pg.521]

With organic polymers, cleaning means that the surface must be modified in... [Pg.6097]

The cleaning or depassivation eflect is of great importance in sonoelectrochemistry, as it can be employed to wash off surface-adsorbed species and reduce blocking of the electrode by adsorption of reaction products. This eflect has been reported, for example, for the depassivation of iron electrodes and for the removal of deposits and in the presence of polymer films on the electrode surface. However, damage of the electrode surface, especially for materials of low hardness such as lead or copper, can also occur under harsh experimental conditions and applied intensities [70, Tf, 80]. [Pg.1943]

Blends of PET and HDPE have been suggested to exploit the availabiUty of these clean recycled polymers. The blends could combine the inherent chemical resistance of HDPE with the processiag characteristics of PET. Siace the two polymers are mutually immiscible, about 5% compatihilizer must be added to the molten mixture (41). The properties of polymer blends containing 80—90% PET/20—10% HDPE have been reported (42). Use of 5—15% compatbiLizer produces polymers more suitable for extmsion blow mol ding than pure PET. [Pg.231]

Only one exception to the clean production of two monomer molecules from the pyrolysis of dimer has been noted. When a-hydroxydi-Zvxyljlene (9) is subjected to the Gorham process, no polymer is formed, and the 16-carbon aldehyde (10) is the principal product in its stead, isolated in greater than 90% yield. This transformation indicates that, at least in this case, the cleavage of dimer proceeds in stepwise fashion rather than by a concerted process in which both methylene—methylene bonds are broken at the same time. This is consistent with the predictions of Woodward and Hoffmann from orbital symmetry considerations for such [6 + 6] cycloreversion reactions in the ground state (5). [Pg.428]

To an experienced operator trained in the handling of industrial chemicals, the dimers present Httle cause for concern in handling or storage. The finished polymer coating presents even less of a health problem contact with the reactive monomer is unlikely. In the ancillary operations, such as cleaning or adhesion promotion, the operator must observe suitable precautions. Before using the process chemicals, operators must read and understand the current Material Safety Data Sheets, which are available from the manufacturers. [Pg.443]

In other surfactant uses, dodecanol—tetradecanol is employed to prepare porous concrete (39), stearyl alcohol is used to make a polymer concrete (40), and lauryl alcohol is utilized for froth flotation of ores (41). A foamed composition of hexadecanol is used for textile printing (42) and a foamed composition of octadecanol is used for coating polymers (43). On the other hand, foam is controUed by detergent range alcohols in appHcations by lauryl alcohol in steel cleaning (44), by octadecanol in a detergent composition (45), and by eicosanol—docosanol in various systems (46). [Pg.449]

Propellants cast into rockets are commonly case-bonded to the motors to achieve maximum volumetric loading density. The interior of the motor is thoroughly cleaned, coated using an insulating material, and then lined with a composition to which the propellant binder adheres under the environmental stresses of the system. The insulation material is generally a mbber-type composition, filled with siUca, titanium dioxide, or potassium titanate. SiUca-filled nitrate mbber and vulcanizable ethylene—propylene mbber have been used. The liner generally consists of the same base polymer as is used in the propellant. It is usually appHed in a thin layer, and may be partially or fully cured before the propellant is poured into the rocket. [Pg.49]

Most solution-cast composite membranes are prepared by a technique pioneered at UOP (35). In this technique, a polymer solution is cast directly onto the microporous support film. The support film must be clean, defect-free, and very finely microporous, to prevent penetration of the coating solution into the pores. If these conditions are met, the support can be coated with a Hquid layer 50—100 p.m thick, which after evaporation leaves a thin permselective film, 0.5—2 pm thick. This technique was used to form the Monsanto Prism gas separation membranes (6) and at Membrane Technology and Research to form pervaporation and organic vapor—air separation membranes (36,37) (Fig. 16). [Pg.68]


See other pages where Polymer cleaning is mentioned: [Pg.146]    [Pg.68]    [Pg.79]    [Pg.173]    [Pg.146]    [Pg.68]    [Pg.79]    [Pg.173]    [Pg.93]    [Pg.2515]    [Pg.331]    [Pg.1012]    [Pg.194]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.441]    [Pg.99]    [Pg.143]    [Pg.144]    [Pg.168]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.206]    [Pg.517]    [Pg.41]    [Pg.257]    [Pg.257]    [Pg.294]    [Pg.378]    [Pg.428]    [Pg.455]    [Pg.217]    [Pg.362]    [Pg.516]    [Pg.517]    [Pg.332]    [Pg.525]    [Pg.223]    [Pg.265]    [Pg.266]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



© 2024 chempedia.info