Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer chain structure composition

Hydrogenation pyrolysis has been applied to the determination of the composition of copolymers of a-olefins, the sequence of monomer units and the manner in which they are added (head-to-head and head-to-tail) [253]. Mikhailov et al. [251] used Py—GC to investigate the structure of low- and high-density polyethylenes and copolymers of ethylene with propylene. The pyrolysis products were hydrogenated. The method made it possible to examine alkanes up to Cjo, which facilitates the investigation of the polymer chain structure. The isoalkanes identified corresponded to the branched polyethylene structure. It has been established that the ethyl and butyl side-chains occur most frequently in polyethylenes. [Pg.130]

While polymer molecular-weight average and distribution have a major influence on behavior, many other factors are also very significant. The structure of the polymer chain, polymer chemical composition, and the additive packages may all play a key role. For example, a polymer chain structure that is linear will have very different thermal and processability characteristics than one that is branched. Of course the chemical composition of the monomer or the use of two or more monomers to produce a copolymer or terpolymer will often account for greater differences than a... [Pg.554]

These materials, unlike the other nanophase materials described in this chapter, are nano-sized in only one dimension and thereby act as nanoplatelets that sandwich polymer chains in composites. Mont-morillonite (MMT) is a well-characterized layered silicate that can be made hydrophobic through either ionic exchange or modification with organic surfactant molecules to aid in dispersion [5,23]. Polymer-layered silicates may be synthesized by exfoliation adsorption, in situ intercalative polymerization, and melt intercalation to yield three general types of polymer/clay nanocomposites. Intercalated structures are characterized as alternating polymer and siHcate layers in an ordered pattern with a periodic space between layers of a few nanometers [13], ExfoHated or delaminated structure occurs when silicate layers are uniformly distributed throughout the polymer matrix. In some cases, the polymer does not intercalate... [Pg.632]

The requirement, that all components of a plastic-composition must be degraded is of essential relevance for copolymers and especially for aliphatic-aromatic copolyesters. Here in one polymer chain structures are combined, which differ significantly in their degradation behaviour when the monomers are located in the corresponding homopolymers (aliphatic polyesters often are easily biodegraded while aromatic polyesters such as PET are quite biologically resistant). In this particular case it has to be ensured that no domains within the copolyester chains are poorly biodegradable and can accumulate in the nature. [Pg.309]

Due to the structure filler hierarchical morphology and surrounding polymer matrix at nanometer length scale, the well-defined concepts in conventional two-phase composites should not be directly applied to polymer nanocomposites. Polymer molecules and nanofillers have equivalent size and the polymer-filer interactions are highly dependent on the local molecular structure and bonding at the interface. Therefore, nanofillers and polymer chains structures cannot be considered as continuous phase at these length scales, and the bulk mechanical properties caimot be determined, for that reason, using traditional continuum-based micromechanical approaches [47,48]. [Pg.123]

Chain Structure. The chemical composition of poly (vinyhdene chloride) has been confirmed by various techniques, including elemental analysis, x-ray diffraction analysis, degradation studies, and in, Raman, and nmr spectroscopy. The polymer chain is made up of vinyhdene chloride units added head-to-tail ... [Pg.430]

The actual experimental moduli of the polymer materials are usually about only % of their theoretical values [1], while the calculated theoretical moduli of many polymer materials are comparable to that of metal or fiber reinforced composites, for instance, the crystalline polyethylene (PE) and polyvinyl alcohol have their calculated Young s moduli in the range of 200-300 GPa, surpassing the normal steel modulus of 200 GPa. This has been attributed to the limitations of the folded-chain structures, the disordered alignment of molecular chains, and other defects existing in crystalline polymers under normal processing conditions. [Pg.295]

However, the relaxation process is rather slow whereas thermoplast processing calls for almost instantaneous cooling of the melt after molding and due to this fact the chain structure is not restored. From this it follows that in molding a conducting polymer composite the cooling of the melt should have a speed comparable to the speed of restoration of the filler secondary structure, otherwise the conductivity of the polymer composite will be reduced. [Pg.138]

In catalytic polymerization the reactivity of the propagation center depends on the catalyst composition. Therefore, the dependence of the molecular structure of the polymer chain mainly on the catalyst composition, and less on the experimental conditions, is characteristic of catalytic polymerization. On the other hand, in polymerization by free-radical or free-ion mechanisms the structure of a polymer is determined by the polymerization conditions (primarily temperature) and does not depend on the type of initiator. [Pg.174]

The specific feature of polymerization as a catalytic reaction is that the composition and structure of the polymer molecule formed show traces of the mechanism of the processes proceeding in the coordination sphere of the transition metal ion to which a growing polymer chain is bound. It offers additional possibilities for studying the intimate mechanism of this heterogeneous catalytic reaction. [Pg.213]

Polymer technology has progressed very rapidly in recent years, and it is now common research and development practice to design polymers with specific, marketable functions by varying chain lengths, structural composition, and functional positioning. [Pg.442]

Polymer products synthesized in laboratories and in industry represent a set of individual chemical compounds whose number is practically infinite. Macro-molecules of such products can differ in their degree of polymerization, tactici-ty, number of branchings and the lengths that connect their polymer chains, as well as in other characteristics which describe the configuration of the macromolecule. In the case of copolymers their macromolecules are known to also vary in composition and the character of the alternation of monomeric units of different types. As a rule, it is impossible to provide an exhaustive quantitative description of such a polymer system, i.e. to indicate concentrations of all individual compounds with a particular chemical (primary) structure. However, for many practical purposes it is often enough to define a polymer specimen only in terms of partial distributions of molecules for some of their main characteristics (such as, for instance, molecular weight or composition) avoiding completely a... [Pg.162]

It is considered that, if ideal, optically active poly(alkyl(aryl)silane) homopolymer and copolymer systems could be obtained which had stiffer main-chain structures with longer persistence lengths, it should be possible to clarify the relationship between the gabs value and the chiral molar composition. The magnitude of the chirality of the polyisocyanates allowed precise correlations with the cooperativity models.18q In the theory of the cooperative helical order in polyisocyanates, the polymers are characterized by the chiral order parameter M, which is the fraction of the main chain twisting in one helical sense minus the fraction of the main chain twisting in the opposing sense. This order parameter is equal to the optical activity normalized by the value for an entirely one-handed helical polymer. The theory predicts... [Pg.257]

Figure 6.5 Illustrations of nanoscale spherical assemblies resulting from block copolymer phase separation in solution are shown, along with the chemical compositions that have been employed to generate each of the nanostructures (a) core crosslinked polymer micelles (b) shell crosslinked polymer micelles (SCKs) with glassy cores (c) SCKs with fluid cores (d) SCKs with crystalline cores (e) nanocages, produced from removal of the core of SCKs (f) SCKs with the crosslinked shell shielded from solution by an additional layer of surface-attached linear polymer chains (g) crosslinked vesicles (h) shaved hollow nanospheres produced from cleavage of the internally and externally attached linear polymer chains from the structure of (g)... Figure 6.5 Illustrations of nanoscale spherical assemblies resulting from block copolymer phase separation in solution are shown, along with the chemical compositions that have been employed to generate each of the nanostructures (a) core crosslinked polymer micelles (b) shell crosslinked polymer micelles (SCKs) with glassy cores (c) SCKs with fluid cores (d) SCKs with crystalline cores (e) nanocages, produced from removal of the core of SCKs (f) SCKs with the crosslinked shell shielded from solution by an additional layer of surface-attached linear polymer chains (g) crosslinked vesicles (h) shaved hollow nanospheres produced from cleavage of the internally and externally attached linear polymer chains from the structure of (g)...

See other pages where Polymer chain structure composition is mentioned: [Pg.44]    [Pg.12]    [Pg.65]    [Pg.44]    [Pg.260]    [Pg.498]    [Pg.319]    [Pg.264]    [Pg.186]    [Pg.358]    [Pg.89]    [Pg.572]    [Pg.349]    [Pg.682]    [Pg.585]    [Pg.215]    [Pg.219]    [Pg.87]    [Pg.109]    [Pg.31]    [Pg.38]    [Pg.395]    [Pg.6]    [Pg.354]    [Pg.131]    [Pg.486]    [Pg.141]    [Pg.281]    [Pg.164]    [Pg.158]    [Pg.170]    [Pg.351]    [Pg.209]    [Pg.159]    [Pg.95]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Chain structures

Composite chain

Composite structures

Polymer chain structure

Polymer composites structures

Structural composition

Structure composition

© 2024 chempedia.info