Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester polycondensations

Key words In situ infrared spectroscopy, stable free radical polymerization, free radical alternating polymerization, living anionic polymerization, melt phase polyester polycondensation... [Pg.9]

Solution polycondensation is used in industry to produce polyurethanes, polycarbonates and certain types of polyamides and polyesters. Polycondensation in solution is most frequently used when it is difficult or impossible to keep the reactants in the same phase using bulk polymerization, or when the melting point of the resulting polymer is too high. Solution polycondensation takes place at lower temperatures than melt polymerization and enables efficient heat transfer to be maintained due to lower viscosity. However, solution polycondensation requires polymer separation from solution, recovery of solvent, and polymer washing and drying. [Pg.277]

There are two main routes to synthesise aliphatic polyesters polycondensation of bifunctional hydroxy acids and ring-opening polymerisation (ROP) of cyclic ester monomers (Okada, 2002). [Pg.38]

Keywords Enzyme Lipase Polyester Polycondensation Biodegradable polymer... [Pg.133]

Zimmer also has two other contracts One is to build a 660 tonnes/day polyester polycondensation plant for Changzhou Plastics Group Corp in Changzhou, to produce granulate for use In making PET bottles. Completion is projected for late 2004. The other contract is to build a US 30 million,... [Pg.60]

Condensation polymerization differs from addition polymerization in that the polymer is formed by reaction of monomers, each step in the process resulting in the elimination of some easily removed molecule (often water). E.g. the polyester polyethylene terephthalate (Terylene) is formed by the condensation polymerization (polycondensation) of ethylene glycol with terephthalic acid ... [Pg.321]

Reactions of the Methyl Groups. These reactions include oxidation, polycondensation, and ammoxidation. PX can be oxidized to both terephthahc acid and dimethyl terephthalate, which ate then condensed with ethylene glycol to form polyesters. Oxidation of OX yields phthaUc anhydride, which is used in the production of esters. These ate used as plasticizers for synthetic polymers. MX is oxidized to isophthaUc acid, which is also converted to esters and eventually used in plasticizers and resins (see Phthalic acids and otherbenzenepolycarboxylic acids). [Pg.413]

Synthetic Fiber and Plastics Industries. In the synthetic fibers and plastics industries, the substrate itself serves as the solvent, and the whitener is not appHed from solutions as in textiles. Table 6 Hsts the types of FWAs used in the synthetic fibers and plastic industries. In the case of synthetic fibers, such as polyamide and polyester produced by the melt-spinning process, FWAs can be added at the start or during the course of polymerization or polycondensation. However, FWAs can also be powdered onto the polymer chips prior to spinning. The above types of appHcation place severe thermal and chemical demands on FWAs. They must not interfere with the polymerization reaction and must remain stable under spinning conditions. [Pg.119]

A polyester backbone with two HFIP groups (12F aromatic polyester of 12F-APE) was derived by the polycondensation of the diacid chloride of 6FDCA with bisphenol AF or bisphenol A under phase-transfer conditions (120). These polymers show complete solubkity in THF, chloroform, ben2ene, DMAC, DMF, and NMP, and form clear, colorless, tough films the inherent viscosity in chloroform at 25°C is 0.8 dL/g. A thermal stabkity of 501°C (10% weight loss in N2) was observed. [Pg.539]

The second largest use at 21% is for unsaturated polyester resins, which are the products of polycondensation reactions between molar equivalents of certain dicarboxyhc acids or thek anhydrides and glycols. One component, usually the diacid or anhydride, must be unsaturated. A vinyl monomer, usually styrene, is a diluent which later serves to fully cross-link the unsaturated portion of the polycondensate when a catalyst, usually a peroxide, is added. The diacids or anhydrides are usually phthahc anhydride, isophthahc acid, and maleic anhydride. Maleic anhydride provides the unsaturated bonds. The exact composition is adjusted to obtain the requked performance. Resins based on phthahc anhydride are used in boat hulls, tubs and spas, constmction, and synthetic marble surfaces. In most cases, the resins contain mineral or glass fibers that provide the requked stmctural strength. The market for the resins tends to be cychcal because products made from them sell far better in good economic times (see Polyesters,unsaturated). [Pg.485]

The polymer is then dried thoroughly and stored for subsequent processing. Whenever a polyester is made by melt polycondensation, a small amount of cycHc oligomer is formed which is in equiHbrium with the polymer. This can be extracted with solvents from soHd polymer but when the... [Pg.294]

In general, polymers are formed by two types of reactions condensation and addition. The formation of a polyester by polycondensation may be illustrated as follows. [Pg.429]

The concept of functionaUty and its relationship to polymer formation was first advanced by Carothers (15). Flory (16) gready expanded the theoretical consideration and mathematical treatment of polycondensation systems. Thus if a dibasic acid and a diol react to form a polyester, assumiag there is no possibihty of other side reactions to compHcate the issue, only linear polymer molecules are formed. When the reactants are present ia stoichiometric amouats, the average degree of polymerization, follows the equatioa ... [Pg.35]

Thermoplastic polyurethane elastomers are produced from prepolymers by polycondensation (12,13). A relatively high molecular-weight polyester or polyether with terminal hydroxy groups (a polyglycol) first reacts with an excess of a diisocyanate. [Pg.15]

Reaction of polyhydroxy compounds with polybasic acids gives rise to condensation polymers containing ester (—COO—) groups. Because of the presence of these groups such polycondensates are known as polyesters and find use in such diverse applications as fibres, surface coatings, plasticisers, rubbers and laminating resins. These materials are discussed in detail in Chapter 25. [Pg.556]

Phenothiophosphine ring-containing polyamides and polyesters were also prepared by the polycondensation of 2,8-bischloroformyl-lO-phenylphenothiophos-phine 5,5, 10-trioxide with aromatic diamines such as 4,4 -diaminodiphenyl ether and 4,4 -diaminodiphenyl-methane, and bisphenols such as 4,4 -dihydroxybiphe-nyl and 4,4 -dihydroxydiphenylmethane, respectively [159]. These polymers are soluble in polar aprotic solvents and also exhibit good heat and fire resistance. Phosphorus containing high performance polymers are shown in Table 6. [Pg.47]

Polybibenzoates are a kind of thermotropic polyesters obtained by polycondensation of 4,4 -biphenyldicar-boxylic acid (p,p -bibenzoic acid) with a diol. These polyesters contain the biphenyl group, which is one of the simplest mesogens. They are synthesized by melt transesterification of the dimethyl or diethyl ester of p,p -bibenzoic acid and the corresponding diol, using a titanium compound as catalyst, according to the following scheme ... [Pg.383]

Recently, various polyesters such as poly(ethylene adipate), poly(tetramethylene adipate), poly(caprolac-tone), and poly(aliphatic carbonate), having terminal hydroxyl groups, were reacted with ACPC to give corresponding macroazoesters and their thermal behaviors were observed by DSC [14]. The block copolymers of these polycondensation polymers with addition polymers such as PSt and PMMA were synthesized [14]. [Pg.757]

Most of these furan polycondensates are more sensitive to thermal and oxidative degradation than their benzene counterparts. Particularly affected are the polyesters obtained from 2,5 -fci sfhydroxymethyl) furan indicating that one of the vulnerable groups must be the -Fu—CH2—0-, and not the -Fu—CO—O-, since polycondensates obtained from 2,5-dicarboxylic acid are more stable, as expected from the... [Pg.51]

Polyesters. The polycondensation prods of di-carboxylic acids with dihydroxy alcohols. [Pg.812]

Unsaturated polyesters are low-molar-mass polyesters obtained by melt polycondensation of 1,2-diols with saturated and unsaturated anhydrides or dibasic... [Pg.29]

Polyesters have been obtained in organic medium by polyesterification of hydroxy acids,328,329 hydroxy esters,330 stoichiometric mixtures of diols and diacids,331-333 diols and diesters,334-339 and diols and cyclic anhydrides.340 Lipases have also been reported to catalyze ester-ester interchanges in solution or in die bulk at moderate temperature.341 Since lipases obviously catalyze the reverse reaction (i.e., hydrolysis or alcoholysis of polyester), lipase-catalyzed polyesterifications can be regarded as equilibrium polycondensations taking place in mild conditions (Scheme 2.35). [Pg.83]

Note-. Bisphenol-A and the diaryl esters of terephthalic acid and isophthalic acid are nonvolatile compounds, so that any excess of these components cannot completely be removed, resulting in a low-molar-mass, unusable polyester. Moreover, excess bisphenol-A causes a strong discoloration of the polyester melt due to thermal degradation at the high reaction temperature used. This can be avoided if the diaryl esters are mixed with 5 mol% of diphenyl carbonate. Any excess of this compound can easily be removed in vacuum at the polycondensation temperature. [Pg.112]

Experiment with addition of diphenyl carbonate Diphenyl terephthalate, 31.8 g (0.1 mol), 28.62 g (0.09 mol) of diphenyl isophthalate, and 2.37 g (0.011 mol) of diphenyl carbonate are polycondensed with 45.6 g (0.2 mol) of 2,2-bis(4-hydroxyphenyl)propane (bisphenol-A) under the preceding conditions. A slighdy brownish, extremely tough, noncrystalline polyester is obtained with an inherent viscosity equal to 0.56 dL/g. The softening point of the polyester is equal to 200°C and the melting range is 215-285°C. [Pg.112]

This aliphatic hyperbranched polyester is prepared by the bulk polycondensation of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) as AB2 monomer and 1,1,1-tris(hydroxymethyl)propane (TMP) as B3 core molecule, according to a procedure... [Pg.114]

As is die case for odier polycondensation reactions, internal interchange reactions are possible for ADMET, similar to diat of polyesters and polyamides.16 Interchange reactions involve a catalyst molecule on a polymer chain end reacting widi an internal double bond in another polymer chain. The result is two new polymer chains however, no change in the molecular weight distribution... [Pg.437]

See also PBT degradation structure and properties of, 44-46 synthesis of, 106, 191 Polycaprolactam (PCA), 530, 541 Poly(e-caprolactone) (CAPA, PCL), 28, 42, 86. See also PCL degradation OH-terminated, 98-99 Polycaprolactones, 213 Poly(carbo[dimethyl]silane)s, 450, 451 Polycarbonate glycols, 207 Polycarbonate-polysulfone block copolymer, 360 Polycarbonates, 213 chemical structure of, 5 Polycarbosilanes, 450-456 Poly(chlorocarbosilanes), 454 Polycondensations, 57, 100 Poly(l,4-cyclohexylenedimethylene terephthalate) (PCT), 25 Polydimethyl siloxanes, 4 Poly(dioxanone) (PDO), 27 Poly (4,4 -dipheny lpheny lpho sphine oxide) (PAPO), 347 Polydispersity, 57 Polydispersity index, 444 Poly(D-lactic acid) (PDLA), 41 Poly(DL-lactic acid) (PDLLA), 42 Polyester amides, 18 Polyester-based networks, 58-60 Polyester carbonates, 18 Polyester-ether block copolymers, 20 Polyester-ethers, 26... [Pg.595]

As early as 1952, Flory [5, 6] pointed out that the polycondensation of AB -type monomers will result in soluble highly branched polymers and he calculated the molecular weight distribution (MWD) and its averages using a statistical derivation. Ill-defined branched polycondensates were reported even earlier [7,8]. In 1972, Baker et al. reported the polycondensation of polyhydrox-ymonocarboxylic acids, (OH)nR-COOH, where n is an integer from two to six [ 9]. In 1982, Kricheldorf et al. [ 10] pubhshed the cocondensation of AB and AB2 monomers to form branched polyesters. However, only after Kim and Webster published the synthesis of pure hyperbranched polyarylenes from an AB2 monomer in 1988 [11-13], this class of polymers became a topic of intensive research by many groups. A multitude of hyperbranched polymers synthesized via polycondensation of AB2 monomers have been reported, and many reviews have been published [1,2,14-16]. [Pg.3]

Polycondensation of dicarboxylic acid derivatives and glycols to polyesters... [Pg.212]

Alkyl esters often show low reactivity for lipase-catalyzed transesterifications with alcohols. Therefore, it is difficult to obtain high molecular weight polyesters by lipase-catalyzed polycondensation of dialkyl esters with glycols. The molecular weight greatly improved by polymerization under vacuum to remove the formed alcohols, leading to a shift of equilibrium toward the product polymer the polyester with molecular weight of 2 x 10" was obtained by the lipase MM-catalyzed polymerization of sebacic acid and 1,4-butanediol in diphenyl ether or veratrole under reduced pressure. ... [Pg.213]


See other pages where Polyester polycondensations is mentioned: [Pg.195]    [Pg.78]    [Pg.195]    [Pg.78]    [Pg.294]    [Pg.295]    [Pg.38]    [Pg.74]    [Pg.46]    [Pg.47]    [Pg.41]    [Pg.43]    [Pg.73]    [Pg.75]    [Pg.587]    [Pg.588]    [Pg.60]    [Pg.225]    [Pg.212]   
See also in sourсe #XX -- [ Pg.85 , Pg.86 , Pg.88 , Pg.89 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 ]




SEARCH



Continuous Solid-state Polycondensation of Polyesters

Melt phase polyester polycondensation

Polycondensation functional polyesters

Polycondensation of dicarboxylic acid derivatives and glycols to polyesters

Polyesters polycondensation

Polyesters polycondensation

Polyesters polycondensation with immobilized

Preparation of a Liquid Crystalline (LC), Aromatic Main-Chain Polyester by Polycondensation in the Melt

Preparation of a Liquid Crystalline , Aromatic Main-Chain Polyester by Polycondensation in the Melt

Solid-state Polycondensation of Other Polyesters

Solid-state Polycondensation of Polyester Resins Fundamentals and Industrial Production

Solid-state polycondensation polyesters

© 2024 chempedia.info