Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polybutadienes development

These addition reactions of unsaturated polymers, like liquid polybutadiene, developed into preparations of useful commercial materials. The patent literature describes procedures that use hydrogen peroxide in the presence of organic acids or their heavy metal salts. Reaction conditions place a limitation on the molecular weights of the polymers, because it is easier to handle lower-viscosity solutions. A modification of the procedures is to use peracetic acid in place of hydrogen peroxide. The most efficient methods rely upon formations of organic peracids in situ with cationic exchange resins acting as catalysts. This can be illustrated as follows ... [Pg.414]

Initially transparent polybutadiene develops micron-sized surface cracks when stretched and exposed to ozone. The... [Pg.36]

Thermoplastic Elastomers. These represent a whole class of synthetic elastomers, developed siace the 1960s, that ate permanently and reversibly thermoplastic, but behave as cross-linked networks at ambient temperature. One of the first was the triblock copolymer of the polystyrene—polybutadiene—polystyrene type (SheU s Kraton) prepared by anionic polymerization with organoHthium initiator. The stmcture and morphology is shown schematically in Figure 3. The incompatibiHty of the polystyrene and polybutadiene blocks leads to a dispersion of the spherical polystyrene domains (ca 20—30 nm) in the mbbery matrix of polybutadiene. Since each polybutadiene chain is anchored at both ends to a polystyrene domain, a network results. However, at elevated temperatures where the polystyrene softens, the elastomer can be molded like any thermoplastic, yet behaves much like a vulcanized mbber on cooling (see Elastomers, synthetic-thermoplastic elastomers). [Pg.471]

Between the 1920s when the initial commercial development of mbbery elastomers based on 1,3-dienes began (5—7), and 1955 when transition metal catalysts were fkst used to prepare synthetic polyisoprene, researchers in the U.S. and Europe developed emulsion polybutadiene and styrene—butadiene copolymers as substitutes for natural mbber. However, the tire properties of these polymers were inferior to natural mbber compounds. In seeking to improve the synthetic material properties, research was conducted in many laboratories worldwide, especially in the U.S. under the Rubber Reserve Program. [Pg.530]

Rubber and Elastomers Rubber and elastomers are widely used as lining materials. To meet the demands of the chemical indus-tiy, rubber processors are continually improving their products. A number of synthetic rubbers have been developed, and while none has all the properties of natural rubber, they are superior in one or more ways. The isoprene and polybutadiene synthetic rubbers are duphcates of natural. [Pg.2461]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

In the mid-1970s there was a short period during which styrene was in very short supply. This led to the development of what were known as high-vinyl polybutadienes which contained pendent vinyl groups as a result of 1,2-polymer-isation mechanisms. These rubbers had properties similar to those of SBR and could replace the latter should it become economically desirable. [Pg.291]

The commercial success of ABS polymers has led to the investigation of many other polyblend materials. In some cases properties are exhibited which are superior to those of ABS and some of the materials are commercially available. For example, the opacity of ABS has led to the development of blends in which the glassy phase is modified to give transparent polymers whilst the limited light aging has been countered by the use of rubbers other than polybutadiene. [Pg.448]

A new process to develop interface vulcanization is grafting of selective accelerators onto a polymer chain, which in the subsequent process of vulcanization acts as an effective cure accelerator for the second polymer component in the blend. Beniska et al. [6] prepared SERFS blends where the polystyrene phase was grafted with the accelerator for curing SBR. Improved hardness, tensile strength, and abrasion resistance were obtained. Blends containing modified polystyrene and rw-1,4-polybutadiene showed similar characteristics as SBS triblock copolymers. [Pg.464]

The most spectacular case of products arising from a catalyst invention is that of the stereospecific hydrocarbon polymers made possible by the Ziegler-Natta work on aluminum alkyl/transition metal halide combinations around 1950. Until these catalysts existed, polypropylene, polyiso-prene, and cis-polybutadiene could not be made, and linear polyethylene could not be made cheaply. For each of these products, very large investments were needed in big plants and in market development before they were competitive with the established, big thermoplastics and rubbers. Entrance fees ran into tens of millions of dollars. [Pg.237]

Another exciting developing field is in material science. Chlorination and bromination of fullerenes (refs. 18,19) and solid state bromination of polyacetylenes (refs. 20,21) and of polybutadienes (ref. 22) are typical examples. [Pg.2]

A chemical method developed by Kolthoff and Lee for quantitatively determining the proportion of 1,4 and 1,2 units in a polybutadiene involves measurement of the rate of oxidation of the residual double bond by perbenzoic acid. [Pg.239]

ESRI methods have been developed in our Detroit laboratory for the study of heterophasic systems such as ABS [14,40,59,87-89] and HPEC [61,90], both containing bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Tinuvin 770) as the stabilizer, and exposed to thermal treatment and UV irradiation. The HAS-NO provided the contrast necessary in the imaging experiments. The major objectives were to examine polymer degradation under different conditions to assess the effect of rubber phase, polybutadiene (PB) in ABS and ethylene-propylene rubber (EPR) in HPEC, on the extent of degradation and to evaluate the extent of... [Pg.517]

Buna [Butadien natrium] The name has been used for the product, the process, and the company VEB Chemische Werke Buna. A process for making a range of synthetic rubbers from butadiene, developed by IG Farbenindustrie in Leverkusen, Germany, in the late 1920s. Sodium was used initially as the polymerization catalyst, hence the name. Buna S was a copolymer of butadiene with styrene Buna N a copolymer with acrylonitrile. The product was first introduced to the pubhc at the Berlin Motor Show in 1936. Today, the trade name Buna CB is used for a polybutadiene rubber made by Bunawerke Hiils using a Ziegler-Natta type process. German Patent 570, 980. [Pg.46]

The first move in this direction was to improve the weatherability of impact-resistant polystyrene. Because polybutadiene, the most widely used rubber in impact-resistant polystyrene, is unsaturated, it is sensitive to photooxidation, and impact-resistant polystyrene is therefore not suitable for outdoor applications. A saturated rubber might be able to help here. In the ABS sector this has been successfully tried out with acrylate rubber (77) and EPDM (78, 79), and the latter has also been used in impact-resistant polystyrene (80, 81) This development has elicited satisfactory responses only in certain areas and more work still has to be done. For instance, attempts have been made to improve resistance to weathering by using silicone rubber (82 ). This approach is effective, but economic factors still stand in its way. Further impetus may also be expected from stabilizer research. Hindered secondary amines (83), to which considerable attention has recently been paid, are a first step in this direction. [Pg.278]


See other pages where Polybutadienes development is mentioned: [Pg.202]    [Pg.330]    [Pg.423]    [Pg.257]    [Pg.189]    [Pg.467]    [Pg.530]    [Pg.532]    [Pg.532]    [Pg.533]    [Pg.534]    [Pg.438]    [Pg.502]    [Pg.327]    [Pg.11]    [Pg.371]    [Pg.500]    [Pg.922]    [Pg.947]    [Pg.395]    [Pg.786]    [Pg.39]    [Pg.121]    [Pg.162]    [Pg.92]    [Pg.119]    [Pg.154]    [Pg.155]    [Pg.276]    [Pg.329]    [Pg.322]   
See also in sourсe #XX -- [ Pg.431 ]

See also in sourсe #XX -- [ Pg.472 ]




SEARCH



© 2024 chempedia.info