Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2-Polybutadiene strain

The cross-linking of 1,2-polybutadiene strained in simple extension has been described in previous papers of this series.When a strained sample with stretch ratio X is crosslinked with y irradiation near the glass-transition temperature (T ), the resulting cross-link network traps the entanglemints originally present after release and warming, the sample seeks a state of ease with stretch ratio Xg in which the forces associated with the cross-links and the trapped entanglements act in opposite directions. [Pg.939]

B 1,481.2 1,4-Polybutadiene (low vinyl) 1,2-Polybutadiene (high vinyl) Polyethylene Polybutylene Improved material stress-strain properties... [Pg.168]

Some typical stress-strain curves for a carboxy-terminated polybutadiene proplnt (CTPB) containing 86% solids are given in Figure 8, and for a PBAA propellant (see Table 13) containing 83% solids in Figure 9 (Ref 52). The authors concluded that the CTPB proplnts studied were highly susceptible to humidity degradation... [Pg.902]

The influence of ambient aging at 70°F and accelerated aging at 160°F on the stress-strain behavior of carboxy-terminated polybutadiene, polybutadiene-acrylic acid, polybutadiene-acrylic acid-acrylonitrile, and hydroxy-terminated polybutadiene composite propints is shown in Figures 10 and 11. The elastomers and curative agents for these formulations are listed below... [Pg.905]

Under increasing strain the propint volume increases from the voids created around the unbonded solid particles. Nonlinearities in Young s modulus and Poisson s ratio then occur. Francis (Ref 50) shows this effect for a carboxy-terminated polybutadiene composite propellant with 14% binder as in Figure 12. He concludes that nonlinearities in low-temperature properties reduce the predicted stress and strain values upon cooling a solid motor, and therefore a structural analysis that neglects these effects will be conservative. However, when the predictions are extended to a pressurized fiberglas motor case, the nonlinearities in properties produce greater strains than those predicted with linear analysis... [Pg.905]

FIGURE 30.7 Typical (averaged) torque traces as recorded when a gum polybutadiene sample is submitted to high strain the Fourier transform (FT) spectrum exhibits accordingly significant harmonic contributions the inset table gives the results of the automatic analysis of torque and strain signals. [Pg.827]

The properties of elastomers are much improved by strain-induced crystallization, which occurs only in polymers with high stereoregularity. The polymerization of butadiene using completely soluble catalysts composed of a) rare earth carboxylates, b) Lewis acids and c) aluminum alkyls leads to polymers with up to 99 % cis-1,4 configuration. These polymers show more strain-induced crystallization than the commercial polybutadienes and consequently their processability is much improved. [Pg.57]

The polybutadienes prepared with these barium t-butoxide-hydroxide/BuLi catalysts are sufficiently stereoregular to undergo crystallization, as measured by DTA ( 8). Since these polymers have a low vinyl content (7%), they also have a low gl ass transition temperature. At a trans-1,4 content of 79%, the Tg is -91°C and multiple endothermic transitions occur at 4°, 20°, and 35°C. However, in copolymers of butadiene (equivalent trans content) and styrene (9 wt.7. styrene), the endothermic transitions are decreased to -4° and 25°C. Relative to the polybutadiene, the glass transition temperature for the copolymer is increased to -82°C. The strain induced crystallization behavior for a SBR of similar structure will be discussed after the introduction of the following new and advanced synthetic rubber. [Pg.82]

The main conclusions of the strain induced crystallization behavior of high trans polybutadiene based rubber and natural rubber are (1) the rate of crystallization is extremely rapid compared to that of NR (2) the amount of strain induced crystallization is small compared to that of NR, especially at room temperature and (3) for the high trans SBR s relative to NR, crystallization is more sensitive to temperature at low extension ratios, and crystallization is less sensitive to strain. [Pg.96]

The two-network method has been carefully examined. All the previous two-network results were obtained in simple extension for which the Gaussian composite network theory was found to be inadequate. Results obtained on composite networks of 1,2-polybutadiene for three different types of strain, namely equibiaxial extension, pure shear, and simple extension, are discussed in the present paper. The Gaussian composite network elastic free energy relation is found to be adequate in equibiaxial extension and possibly pure shear. Extrapolation to zero strain gives the same result for all three types of strain The contribution from chain entangling at elastic equilibrium is found to be approximately equal to the pseudo-equilibrium rubber plateau modulus and about three times larger than the contribution from chemical cross-links. [Pg.449]

Graft copolymers are also used as compatibilizers to tie together different phases. HIPS contains PS grafted onto polybutadiene backbones. This allows stress or strain to be transferred from the PS to the polybutadiene phase transferring energy that might break the brittle PS to the more flexible polybutadiene phase. That is why HIPS is stronger than PS itself. [Pg.223]

Under the conditions of Example 5-23 the rubber phase of the end product shows an interesting micro-morphology. It consists of particles of 1-3 microns diameter into which polystyrene spheres with much lower diameters are dispersed. These included polystyrene spheres act as hard fillers and raise the elastic modulus of polybutadiene. As a consequence, HIPS with this micro-morphology has a higher impact resistance without loosing too much in stiffness and hardness. This special morphology can be visualized with transmission electron microscopy. A relevant TEM-picture obtained from a thin cut after straining with osmium tetroxide is shown in Sect. 2.3.4.14. [Pg.370]

The information on physical properties of radiation cross-linking of polybutadiene rubber and butadiene copolymers was obtained in a fashion similar to that for NR, namely, by stress-strain measurements. From Table 5.6, it is evident that the dose required for a full cure of these elastomers is lower than that for natural rubber. The addition of prorads allows further reduction of the cure dose with the actual value depending on the microstructure and macrostructure of the polymer and also on the type and concentration of the compounding ingredients, such as oils, processing aids, and antioxidants in the compound. For example, solution-polymerized polybutadiene rubber usually requires lower doses than emulsion-polymerized rubber because it contains smaller amount of impurities than the latter. Since the yield of scission G(S) is relatively small, particularly when oxygen is excluded, tensile... [Pg.109]

Generally applicable mathematical representations of the dilational behavior of propellants have not been developed, as might be expected however, Fishman and Rinde (29) have derived empirical expressions for the formulations which they studied. These relationships give reasonable description of uniaxial behavior over wide ranges of strain, time, and temperature for several testing modes. Equation 1 is representative of one of the generalized expressions for the polyurethane and polybutadiene formulations studied. [Pg.210]

Tristar polybutadienes prepared by the intermediacy of lithium acetal initiators were also converted to three dimensional networks in a liquid rubber formulation using a diisocyanate curing agent. Table IV shows normal stress-strain properties for liquid rubber networks at various star branch Hn s. It can be seen that as the branch Mn increases to 2920, there is a general increase in the quality of the network. Interestingly, the star polymer network with a star branch Mn of 2920 (Mc=5840) exhibits mechanical properties in the range of a conventional sulfur vulcani-zate with a Me of about 6000-8000. [Pg.434]

Ferry and co-workers (295) have obtained a value Me = 13000 for 1,2 polybutadiene by a new method which involves crosslinking the polymer in a strained state. The initial extension of the uncrosslinked sample, the recovery after... [Pg.114]

Figure 6. Tensile strength of polybutadiene with poly-2,6-dichlorostyrene (DC) filler. Strain rate, 2 inches/min. Figure 6. Tensile strength of polybutadiene with poly-2,6-dichlorostyrene (DC) filler. Strain rate, 2 inches/min.
Within a single chain cis- and trans configuration can also both occur in a random sequence the chain is than irregular (some kinds of polybutadiene). This has consequences for the occurrence of strain-induced crystallization (see Chapter 4). [Pg.40]

Crystallization of oriented chains is, in various respects, important for the polymer properties. The fact has been mentioned before, that stereospecific rubbers such as cis-1,4 polybutadiene can crystallize when under strain. The spontaneously formed crystals contribute strongly to the strength of the vulcanizate. A vulcanized natural rubber has, without carbon black reinforcement, a tensile strength of about 40 MPa, whereas an unreinforced SBR breaks at about 3 MPa. (With SBR a high tensile strength can only be reached with carbon black.)... [Pg.83]


See other pages where 1,2-Polybutadiene strain is mentioned: [Pg.151]    [Pg.532]    [Pg.284]    [Pg.327]    [Pg.11]    [Pg.134]    [Pg.824]    [Pg.827]    [Pg.48]    [Pg.439]    [Pg.444]    [Pg.466]    [Pg.77]    [Pg.48]    [Pg.223]    [Pg.638]    [Pg.108]    [Pg.105]    [Pg.104]    [Pg.320]    [Pg.95]    [Pg.151]    [Pg.564]    [Pg.509]    [Pg.320]    [Pg.119]    [Pg.121]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



1,4-Polybutadiene strain-induced

Polybutadiene - continued stress-strain

Stress-strain polybutadiene

© 2024 chempedia.info