Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entanglement chain

Next let us consider the differences in molecular architecture between polymers which exclusively display viscous flow and those which display a purely elastic response. To attribute the entire effect to molecular structure we assume the polymers are compared at the same temperature. Crosslinking between different chains is the structural feature responsible for elastic response in polymer samples. If the crosslinking is totally effective, we can regard the entire sample as one giant molecule, since the entire volume is permeated by a continuous network of chains. This result was anticipated in the discussion of the Bueche theory for chain entanglements in the last chapter, when we observed that viscosity would be infinite with entanglements if there were no slippage between chains. [Pg.137]

The plateau compliance is characteristic of rubbery behavior where chain entanglements play the role of effective crosslinks. [Pg.171]

Whether the beads representing subchains are imbedded in an array of small molecules or one of other polymer chains changes the friction factor in Eq. (2.47), but otherwise makes no difference in the model. This excludes chain entanglement effects and limits applicability to M < M., the threshold molecular weight for entanglements. [Pg.185]

The alcohol swells the poly (ethyl methacrylate) beads, rapidly promoting diffusion of the plasticizer into the polymer. As a result of the polymer-chain entanglement, a gel is formed. The conditioner is applied to the denture and provides a cushioning effect alcohol and plasticizer are slowly leached out, and the material becomes rigid. To ensure resiliency, the conditioner must be replaced after a few days. Some materials exhibit high flow over a short period compared with others with low initial flow the latter remain active longer. [Pg.490]

Amorphous stereotactic polymers can crystallise, in which condition neighbouring chains are parallel. Because of the unavoidable chain entanglement in the amorphous state, only modest alignment of amorphous polymer chains is usually feasible, and moreover complete crystallisation is impossible under most circumstances, and thus many polymers are semi-crystalline. It is this feature, semicrystallinity, which distinguished polymers most sharply from other kinds of materials. Crystallisation can be from solution or from the melt, to form spherulites, or alternatively (as in a rubber or in high-strength fibres) it can be induced by mechanical means. This last is another crucial difference between polymers and other materials. Unit cells in crystals are much smaller than polymer chain lengths, which leads to a unique structural feature which is further discussed below. [Pg.311]

Langley, N.R. and Polmanteer, K.E., Role of chain entanglements in rubber elasticity. Polym. Prep. Am. Chem. Soc. Div. Polym. Chem., 13(1), 235-240 (1972). [Pg.708]

Appropriately, this was called the Folded Chain Theory and is illustrated in Fig. A.ll. There are several proposals to account for the co-existence of crystalline and amorphous regions in the latter theory. In one case, the structure is considered to be a totally crystalline phase with defects. These defects which include such features as dislocations, loose chain ends, imperfect folds, chain entanglements etc, are regarded as the diffuse (amorphous) regions viewed in X-ray diffraction studies. As an alternative it has been suggested that crystalline... [Pg.421]

The melt viscosity, therefore, rapidly increases with the increase in MW. Whereas the MW below a critical value does not provide the required chain entanglement, and hence, the viscosity increase is slower in the low-MW range. [Pg.277]

The rigid chemical structure of a conjugated polymer helps in the movement of electrons. That stiff structure, however, has limited its use. They are like uncooked spaghetti and do not easily entangle themselves. Polymer chain entanglements are necessary to achieve high viscosities, which are required to create fibers out of these polymers. [Pg.93]

The solidity of gel electrolytes results from chain entanglements. At high temperatures they flow like liquids, but on cooling they show a small increase in the shear modulus at temperatures well above T. This is the liquid-to-rubber transition. The values of shear modulus and viscosity for rubbery solids are considerably lower than those for glass forming liquids at an equivalent structural relaxation time. The local or microscopic viscosity relaxation time of the rubbery material, which is reflected in the 7], obeys a VTF equation with a pre-exponential factor equivalent to that for small-molecule liquids. Above the liquid-to-rubber transition, the VTF equation is also obeyed but the pre-exponential term for viscosity is much larger than is typical for small-molecule liquids and is dependent on the polymer molecular weight. [Pg.513]

Due to dieir compact, branched structure and to die resulting lack of chain entanglement, dendritic polymers exhibit much lower melt and solution viscosity dian their lineal" counterparts. Low a-values in die Mark-Houwink-Sakurada intrinsic viscosity-molar mass equation have been reported for hyperbranched polyesters.198 199 Dendrimers do not obey diis equation, a maximum being observed in die corresponding log-log viscosity-molar mass curves.200 The lack of chain entanglements, which are responsible for most of the polymer mechanical properties, also explains why hyperbranched polymers cannot be used as diermoplastics for structural applications. Aldiough some crystalline or liquid... [Pg.57]

In the literature there is only one serious attempt to develop a detailed mechanistic model of free radical polymerization at high conversions (l. > ) This model after Cardenas and 0 Driscoll is discussed in some detail pointing out its important limitations. The present authors then describe the development of a semi-empirical model based on the free volume theory and show that this model adequately accounts for chain entanglements and glassy-state transition in bulk and solution polymerization of methyl methacrylate over wide ranges of temperature and solvent concentration. [Pg.43]

In applying equation (l) Cardenas and 0 Driscoll use Xq as the critical chain length for chain entanglement and permit Xq to decrease as ( )p increases during the polymerization according to equation (l). Therefore, during the course of polymerization they note three kinds of termination reactions ... [Pg.50]

Determination of the conversion at which significant chain entanglements first occur. [Pg.51]

The remaining problem in the model development is to estimate the decrease in kp as a function of conversion. As the reaction proceeds beyond the point of chain entanglement, a critical conversion is reached where the propagation reaction becomes diffusion controlled and kp begins to fall with further increase in polymer concentration. At the critical conversion, one may write... [Pg.53]


See other pages where Entanglement chain is mentioned: [Pg.2526]    [Pg.2535]    [Pg.105]    [Pg.106]    [Pg.284]    [Pg.284]    [Pg.337]    [Pg.360]    [Pg.504]    [Pg.526]    [Pg.491]    [Pg.491]    [Pg.13]    [Pg.552]    [Pg.478]    [Pg.493]    [Pg.917]    [Pg.247]    [Pg.281]    [Pg.438]    [Pg.67]    [Pg.129]    [Pg.156]    [Pg.168]    [Pg.257]    [Pg.98]    [Pg.43]    [Pg.44]    [Pg.49]    [Pg.49]    [Pg.50]    [Pg.58]    [Pg.68]    [Pg.361]   


SEARCH



Chain entangling

Entangled chains

Entanglements

© 2024 chempedia.info