Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polybutadiene oxidation

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Polymer-based rocket propellants are generally referred to as composite propellants, and often identified by the elastomer used, eg, urethane propellants or carboxy- (CTPB) or hydroxy- (HTPB) terrninated polybutadiene propellants. The cross-linked polymers act as a viscoelastic matrix to provide mechanical strength, and as a fuel to react with the oxidizers present. Ammonium perchlorate and ammonium nitrate are the most common oxidizers used nitramines such as HMX or RDX may be added to react with the fuels and increase the impulse produced. Many other substances may be added including metallic fuels, plasticizers, stabilizers, catalysts, ballistic modifiers, and bonding agents. Typical components are Hsted in Table 1. [Pg.32]

A large number of polymeric compounds have been investigated, but most modem propellants utilize prepolymers that ate hydroxy-functional polybutadienes (HTPB), carboxy-functional polybutadienes (CTPB), or a family of polyethylene oxides (PEGs) to form urethanes. Typical cure reactions... [Pg.38]

Elastomers. Elastomers are polymers or copolymers of hydrocarbons (see Elastomers, synthetic Rubber, natural). Natural mbber is essentially polyisoprene, whereas the most common synthetic mbber is a styrene—butadiene copolymer. Moreover, nearly all synthetic mbber is reinforced with carbon black, itself produced by partial oxidation of heavy hydrocarbons. Table 10 gives U.S. elastomer production for 1991. The two most important elastomers, styrene—butadiene mbber (qv) and polybutadiene mbber, are used primarily in automobile tires. [Pg.369]

Degradation of polyolefins such as polyethylene, polypropylene, polybutylene, and polybutadiene promoted by metals and other oxidants occurs via an oxidation and a photo-oxidative mechanism, the two being difficult to separate in environmental degradation. The general mechanism common to all these reactions is that shown in equation 9. The reactant radical may be produced by any suitable mechanism from the interaction of air or oxygen with polyolefins (42) to form peroxides, which are subsequentiy decomposed by ultraviolet radiation. These reaction intermediates abstract more hydrogen atoms from the polymer backbone, which is ultimately converted into a polymer with ketone functionahties and degraded by the Norrish mechanisms (eq. [Pg.476]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Polybutadiene and polyunsaturated fats, which contain aHyUc hydrogen atoms, oxidize more readily than polypropylene, which contains tertiary hydrogen atoms. A linear hydrocarbon such as polyethylene, which has secondary hydrogens, is the most stable of these substrates. [Pg.223]

The principal mbbers, eg, natural, SBR, or polybutadiene, being unsaturated hydrocarbons, are subjected to sulfur vulcanization, and this process requires certain ingredients in the mbber compound, besides the sulfur, eg, accelerator, zinc oxide, and stearic acid. Accelerators are catalysts that accelerate the cross-linking reaction so that reaction time drops from many hours to perhaps 20—30 min at about 130°C. There are a large number of such accelerators, mainly organic compounds, but the most popular are of the thiol or disulfide type. Zinc oxide is required to activate the accelerator by forming zinc salts. Stearic acid, or another fatty acid, helps to solubilize the zinc compounds. [Pg.467]

This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

There are several approaches to the preparation of multicomponent materials, and the method utilized depends largely on the nature of the conductor used. In the case of polyacetylene blends, in situ polymerization of acetylene into a polymeric matrix has been a successful technique. A film of the matrix polymer is initially swelled in a solution of a typical Ziegler-Natta type initiator and, after washing, the impregnated swollen matrix is exposed to acetylene gas. Polymerization occurs as acetylene diffuses into the membrane. The composite material is then oxidatively doped to form a conductor. Low density polyethylene (136,137) and polybutadiene (138) have both been used in this manner. [Pg.39]

The cis-polybutadiene, cis-polyisoprene, and ethylene-propylene rubbers are close duphcates of natural rubber. The newer eth)aene-propylene rubbers (EPR) have excellent resistance to heat and oxidation. [Pg.2463]

The proximity of the methyl group to the double bond in natural rubber results in the polymer being more reactive at both the double bond and at the a-methylenic position than polybutadiene, SBR and, particularly, polychlor-oprene. Consequently natural rubber is more subject to oxidation, and as in this case (c.f. polybutadiene and SBR) this leads to chain scission the rubber becomes softer and weaker. As already stated the oxidation reaction is considerably affected by the type of vulcanisation as well as by the use of antioxidants. [Pg.288]

Because the polybutadiene component is liable to oxidation, ABS materials are embrittled on prolonged exposure to sunlight. By replacing polybutadiene rubber with other elastomers that contain no main chain double bonds it has been possible to produce blends generally similar to ABS but with improved weathering resistance. Three particular types that have achieved commercial status are ... [Pg.449]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

The polyols used are of three types polyether, polyester, and polybutadiene. The polyether diols range from 400 to about 10,000 g/mol. The most common polyethers are based on ethylene oxide, propylene oxide, and tetrahydrofuran or their copolymers. The ether link provides low temperature flexibility and low viscosity. Ethylene oxide is the most hydrophilic and thus can increase the rate of ingress of water and consequently the cure rate. However, it will crystallize slowly above about 600 g/mol. Propylene oxide is hydrophobic due to hindered access to the ether link, but still provides high permeability to small molecules like water. Tetrahydrofuran is between these two in hydrophobicity, but somewhat more expensive. Propylene oxide based diols are the most common. [Pg.733]

S-BmvS Polystyrene 1,2-Polybutadiene (medium vinyl) Polystyrene Poly(ethylene-co- butylene) Thermally and oxidatively stable... [Pg.169]

Interfacial polycondensation between a diacid chloride and hexamethylenediamine in the presence of small amounts of ACPC also yield polymeric azoamid, which is a macroazo initiator.[27] In this manner, azodicarbox-ylate-functional polystyrene [28], macroazonitriles from 4,4 -azobis(4-cyano-n-pentanoyl) with diisocyanate of polyalkylene oxide [29], polymeric azo initiators with pendent azo groups [3] and polybutadiene macroazoinitiator [30] are macroazoinitiators that prepare block and graft copolymers. [Pg.728]

Composite proplnts, which are used almost entirely in rocket propulsion, normally contain a solid phase oxidizer combined with a polymeric fuel binder with a -CH2—CH2— structure. Practically speaking AP is the only oxidizer which has achieved high volume production, although ammonium nitrate (AN) has limited special uses such as in gas generators. Other oxidizers which have been studied more or less as curiosities include hydrazinium nitrate, nitronium perchlorate, lithium perchlorate, lithium nitrate, potassium perchlorate and others. Among binders, the most used are polyurethanes, polybutadiene/acrylonitrile/acrylic acid terpolymers and hydroxy-terminated polybutadienes... [Pg.886]

Another class of hydrocarbon binders used in propints are the carboxy-terminated polybutadiene polymers which are cross-linked with either tris[l-(2-methyl)aziridinyl] phosphine oxide (MAPO) or combinations with phenyl bis [l -(2-methyl)aziridinyl] phosphine oxide (Phenyl MAPO). Phenyl MAPO is a difunctional counterpart of MAPO which makes possible chain extension of polymers with two carboxylic acid groups. A typical propint formulation with ballistic properties is in Table 11 (Ref 83) Another class of composites includes those using hydroxy-terminated polybutadienes cross-linked with toluene diisocyanate as binders. The following simplified equations illustrate typical reactions involved in binder formation... [Pg.889]


See other pages where Polybutadiene oxidation is mentioned: [Pg.128]    [Pg.128]    [Pg.70]    [Pg.146]    [Pg.2524]    [Pg.203]    [Pg.277]    [Pg.151]    [Pg.246]    [Pg.509]    [Pg.524]    [Pg.544]    [Pg.13]    [Pg.2471]    [Pg.438]    [Pg.448]    [Pg.395]    [Pg.395]    [Pg.510]    [Pg.497]    [Pg.652]    [Pg.352]    [Pg.181]    [Pg.10]    [Pg.444]    [Pg.804]    [Pg.805]    [Pg.832]    [Pg.898]    [Pg.937]    [Pg.938]    [Pg.942]   
See also in sourсe #XX -- [ Pg.483 , Pg.484 ]




SEARCH



Ethylene oxide reaction with polybutadiene

Polybutadienes oxidation

Polybutadienes oxidation

© 2024 chempedia.info