Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamides flame retardants

Bis(bexacbIorocycIopentadieno)cycIooctane. The di-Diels-Alder adduct of hexachlorocyclopentadiene [77 7 ] and cyclooctadiene (44) is a flame retardant having unusually good thermal stabiUty for a chlotinated aUphatic. In fact, this compound is comparable ia thermal stabiUty to brominated aromatics ia some appHcations. Bis(hexachlorocyclopentadieno)cyclooctane is usedia several polymers, especially polyamides (45) and polyolefins (46) for wire and cable appHcations. Its principal drawback is the relatively high use levels required compared to some brominated flame retardants. [Pg.469]

Nylon. Nylons comprise a large family of polyamides with a variety of chemical compositions (234,286,287). They have excellent mechanical properties, as well as abrasion and chemical resistance. However, because of the need for improved performance, many commercial nylon resins are modified by additives so as to improve toughness, heat fabrication, stabiUty, flame retardancy, and other properties. [Pg.421]

Aramid Fibers. Aromatic polyamide fibers exhibiting a range of mechanical properties are available from several manufacturers, perhaps the best known being Du Pont s proprietary fiber Kevlar. These fibers possess many unique properties, such as high specific tensile strength and modulus (see Fig. 4). Aramid fibers have good chemical resistance to water, hydrocarbons, and solvents. They also show excellent flame retardant characteristics (see High PERFORMANCE fibers Polyamdes). [Pg.6]

Melamine cyanurate is useful in preparation of flame retardant polyamide resins and compositions (133). It also is useful as a soHd lubricant (134). [Pg.422]

About 80-90% of the elemental P produced is reoxidized to (pure) phosphoric acid (p. 521). The rest is used to make phosphorus oxides (p. 503). sulfides (p. 506), phosphorus chlorides and oxochloride (p. 4%). and organic P compounds. A small amount is convened to red phos rftorus (see below) for use in the striking surface of matches for pyrotechnics and as a flame retarding agent (in polyamides). Bulk price for P4 is S2.00/kg. [Pg.480]

Hydrolysis of polyamide-based formulations with 6 N HC1 followed by TLC allows differentiation between a-aminocaproic acid (ACA) and hexamethylenedi-amine (HMD) (hydrolysis products of PA6 and PA6.6, respectively), even at low levels. The monomer composition (PA6/PA6.6 ratio) can be derived after chromatographic determination of the adipic acid (AA) content. Extraction of the hydrolysate with ether and derivatisa-tion allow the quantitative determination of fatty acids (from lubricants) by means of GC (Figure 3.27). Further HC1/HF treatment of the hydrolysis residue, which is composed of mineral fillers, CB and nonhydrolysable polymers (e.g. impact modifiers) permits determination of total IM and CB contents CB is measured quantitatively by means of TGA [157]. Acid hydrolysis of flame retarded polyamides allows to determine the adipic acid content (indicative of PA6.6) by means of HPLC, HCN content (indicative of melamine cyanurate) and fatty acid (indicative of a stearate) by means of GC [640]. Determination of ethylene oxide-based antistatic agents... [Pg.154]

The use of copolymers is essentially a new concept free from low-MW additives. However, a random copolymer, which includes additive functions in the chain, usually results in a relatively costly solution yet industrial examples have been reported (Borealis, Union Carbide). Locking a flame-retardant function into the polymer backbone prevents migration. Organophosphorous functionalities have been incorporated in polyamide backbones to modify thermal behaviour [56]. The materials have potential for use as fire-retardant materials and as high-MW fire-retardant additives for commercially available polymers. The current drive for incorporation of FR functionality within a given polymer, either by blending or copolymerisation, reduces the risk of evolution of toxic species within the smoke of burning materials [57]. Also, a UVA moiety has been introduced in the polymer backbone as one of the co-monomers (e.g. 2,4-dihydroxybenzophenone-formaldehyde resin, DHBF). [Pg.721]

Three industries were suspected to cause the BDE-209 contamination along the Vero River the first one, a textile industry which produced polyester fibers treated with flame retardants, the second one produced epoxy resins, and the third one is focused on the polyamide polymerization. Moreover, the effluent of the industrial park at the discharge site to the Vero River was also analyzed. Analysis of industrial effluents of each industry revealed that industry focused on the polyamide polymerization is the main responsible of the BDE-209 contamination, with concentration levels around 2,600 ng/L (Table 5). Nevertheless, the two other industries also contribute in some way to the total contamination. [Pg.185]

Polyamide-imides are appreciated for good mechanical and electrical properties high service temperatures (up to 220°C with possible long service times at 260°C) rigidity good creep behaviour fatigue endurance low shrinkage and moisture uptake inherent flame retardancy chemical resistance usability down to -196°C. [Pg.575]

This mixed product consists of small, platy particles with a relatively high surface area (15-20 m g ). The principal interest has to date been as a flame retardant Aller, principally for polypropylene. Both component phases decompose endothermically with the release of inert gas at relatively low temperatures. They are stable enough to allow incorporation into polymers such as polypropylene, but not polyamides. The performance of the two phases alone and in combination in polypropylene has been reported [91]. As expected from their thermal properties, hydromagnesite was the more effective flame retardant. The decomposition pathway of hydromagnesite has been shown to be considerably affected by pressure and this may affect its flame retardancy [71]. [Pg.96]

Magnesium hydroxide occurs in nature as the mineral brucite. It has a Moh hardness of about 3 and a specific gravity of 2.4. It starts to decompose endothermically with the release of water at about 300 °C and the principal interest in it is as a flame retardant filler for thermoplastics such as polyolefins and polyamides, where the processing temperature is too high for aluminium hydroxide to be utilised effectively. For thermoplastic appHcations low aspect ratio particles are favoured with a particle size of about 1 micron and a specific surface area in the range 4-10 m2 g ... [Pg.100]

PBDEs are used in different resins, polymers, and substrates at levels ranging from 5 to 30% by weight (EU 2001). Plastic materials that utilize PBDEs as flame retardants include ABS polyacrylonitrile (PAN) polyamide(PA) polybutylene terephthalate (PBT) polyethylene (PE) cross-linked polyethylene (XPE) polyethylene terephthalate (PET) polypropylene (PP) polystyrene (PS) high-impact polystyrene (HIPS) polyvinyl chloride (PVC) polyurethane (PUR) and unsaturated polyester (UPE). These polymers and examples of their final products are summarized inTable 5-2 (Hardy 2002 WHO 1994a). [Pg.310]

Military Application and Aerospace wires. Depending on the specific application, a variety of polymers can be considered PVC, polyamides, PTFE, etc (Fig. 3). Navy shipboard specifications require cables with flame retardancy, low smoke emission during fire, and containing no halogen. [Pg.323]

Aramid fibers, i.e. polyamide textile fibers made from aromatic amines and dicar-boxylic acid [177] are similar to polyamide and polyester fibers and are highly heat resistant and flame retardant. Aramid fibers must be heat set by steaming before wet finishing and washed before dyeing for good leveling. [Pg.418]

The red allotropic form of phosphorus is relatively nontoxic and, unlike white phosphorus, is not spontaneously flammable. Red phosphorus is, however, easily ignited. It is a polymeric form of phosphorus, thermally stable up to ca. 450°C. In its finally divided form, it has proved to be a powerful flame-retardant additive.18 Elemental red phosphorus is a highly efficient flame retardant, especially for oxygen-containing polymers such as polycarbonates and polyethylene terephthalate). Red phosphorus is particularly useful in glass-filled polyamide 6,6, where high processing temperature (about 280°C) excludes the use of most phosphorus compounds.19 In addition, coated red phosphorus is used to flame retard nylon electrical parts, mainly in Europe and Asia.20... [Pg.109]

Mixed esters, such as isopropylphenyl diphenyl phosphate and tcrt-butylphenyl diphenyl phosphate, are also widely used as both plasticizers/flame retardants for engineering thermoplastics and hydraulic fluids.11 These esters generally show slightly less flame-retardant efficacy, when compared to triaryl counterparts however, they have the added advantage of lower smoke production when burned. Some novel oligomeric phosphate flame retardants (based on tetraphenyl resorcinol diphosphate) are also employed to flame retard polyphenylene oxide blends, thermoplastic polyesters, polyamides, vinyls, and polycarbonates. [Pg.111]

Cyclic oligomeric phosphonates with the varying degrees of structural complexity (Structure 5.4) are also available in the market.25 They are widely used as flame-retardant finishes for polyester fabrics. After the phosphonate is applied from an aqueous solution, the fabric is heated to swell and soften the fibers, thus allowing the phosphonate to be absorbed and strongly held. It is also a useful retardant in polyester resins, polyurethanes, polycarbonates, polyamide-6, and in textile back coatings. A bicyclic pentaerythritol phosphate has been more recently introduced into the market for use in thermosets as well as for polyolefins (preferably, in combination with melamine or ammonium polyphosphate)... [Pg.112]

Reactive strategies, that is, chemical modifications, appear not to have been explored to a large extent as a route to improved flame retardance in aliphatic polyamides, probably because the chemical... [Pg.114]


See other pages where Polyamides flame retardants is mentioned: [Pg.324]    [Pg.63]    [Pg.324]    [Pg.63]    [Pg.468]    [Pg.478]    [Pg.329]    [Pg.389]    [Pg.275]    [Pg.47]    [Pg.9]    [Pg.273]    [Pg.318]    [Pg.452]    [Pg.613]    [Pg.646]    [Pg.715]    [Pg.720]    [Pg.722]    [Pg.278]    [Pg.155]    [Pg.308]    [Pg.389]    [Pg.403]    [Pg.766]    [Pg.920]    [Pg.329]    [Pg.275]    [Pg.126]    [Pg.21]    [Pg.29]    [Pg.33]    [Pg.79]    [Pg.115]   
See also in sourсe #XX -- [ Pg.122 , Pg.128 , Pg.135 ]




SEARCH



© 2024 chempedia.info