Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly formaldehyde development

In 1947, Du Pont began a development program on the polymerization and stabilization of formaldehyde and its polymer. Twelve years later, Du Pont brought the unzipping tendency under control with proprietary stabilizers and commercially announced Delrin polyacetal polymer (Figure 3). The key to the stabilization of poly formaldehyde resins appears to be a blocking of the terminal... [Pg.498]

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

Japanese workers have developed fibres from poly(vinyl alcohol). The polymer is wet spun from warm water into a concentrated aqueous solution of sodium sulphate containing sulphuric acid and formaldehyde, the latter insolubilising the alcohol by formation of formal groups. [Pg.391]

In the meantime another development had decisively altered the outset situation plastics had been discovered and synthesized, among them also some acid-stable ones such as phenol-formaldehyde resin or poly(vinyl chloride) (PVC). These opened up new possibilities cellulose papers could be impregnated with phenol-formaldehyde resin solution and thus rendered sufficiently acid-stable, and sintered sheets from PVC powder were developed. Independent separators producers were founded, combining knowledge of the chemical industry with experience of the battery industry and thus accelerating the development process. [Pg.252]

In the development of a reactive non-chrome post-treatment, a variety of phenolic resins were synthesized and commercial phenolic resins evaluated. It was found that phenol-formaldehyde resins, creso1-forma1dehyd e condensates, ortho-novo 1 ak resins, and phenol-formaldehyde emulsions gave positive results when employed as post-treatments over zinc and iron phosphate conversion coatings. The above materials all possessed drawbacks. The materials in general have poor water solubility at low concentrations used in post-treatment applications and had to be dried and baked in place in order to obtain good performance. The best results were obtained with poly-4-vinylphenol and derivatives thereof as shown in the following structure (8,9,10)... [Pg.206]

Though much effort has been spent on possible utilization of poly(thio-formaldehyde), no uses for the polymer have been developed. Most samples of the polymer cannot be melt fabricated because they are unstable in the molten state. Solvent fabrication is also impossible because the polymer is insoluble. There are two types erf poly(thioformaldehyde) that are said to be stable at high temperatures, which are polymers made by treatment of trithiane with boron trifluoride etherate and the acetylated anomalous form obtained from sodium hydrosulfide and methylene chloride. These also have not found utility. [Pg.80]

Development of Resist Patterns. Development was done in AZ2401 developer diluted with 2 to 5 times its volume of water AZ2401 is an aqueous solution of KOH with a surfactant. When the resist films were exposed to electron beam doses of 5 iC/cm2 at 25 keV, it usually took 1.5 to 2.0 min for complete development of the images using a diazo-naphthoquinone sensitizer with o-chloro-cresol-formaldehyde Novolak resin in (1 3) AZ2401/water developer. With poly(2-methyl-l-pentene sulfone) the chlorinated Novolak resin exposed to I juC/cm2, it took 2.0 min in (1 4) AZ2401 developer for complete image development. [Pg.345]

Methyl methacrylate (MMA) is an important commodity since it is polymerized to give poly methylmethacrylate (PMMA), a strong, durable and transparent polymer sold under the trade-names Perspex and Plexiglas. Since the conventional routes to MMA involve either the reaction of acetone with HCN to give the cyanohydrin (which has environmental problems), or the oxidation of isobutene, alternative carbonylation routes to MMA are being developed. One of these is the Lucite Alpha process which is claimed to decrease production costs by ca. 40%. This first synthesizes methyl propionate by a methoxycarbonylation of ethylene (Equation 23), using a palladium catalyst with very high (99.8%) selectivity. In the second step, MMA is formed in 95% selectivity by the reaction of methyl propionate with formaldehyde (Equation 24). [Pg.136]

The telechelica,(i -bis(2,6-dimethylphenol)-poly(2,6-dimethylphenyl-ene oxide) (PP0-20H) [174-182] is of interest as a precursor in the synthesis of block copolymers [175] and thermally reactive oligomers [179]. The synthesis has been accomplished by five methods. The first synthetic method was the reaction of a low molecular weight PPO with one phenol chain end with 3,3, 5,5 -tetramethyl-l,4-diphenoquinone. This reaction occurred by a radical mechanism [174]. The second method was the electrophilic condensation of the phenyl chain ends of two PPO-OH molecules with formaldehyde [177,178], The third method consists of the oxidative copolymerization of 2,6-dimethylphenol with 2,2 -di(4-hydroxy-3,5-di-methylphenyl)propane [176-178]. This reaction proceeds by a radical mechanism. A fourth method was the phase transfer-catalyzed polymerization of 4-bromo-2,6-dimethylphenol in the presence of 2,2-di(4-hy-droxy-3,5-dimethylphenyl)propane [181]. This reaction proceeded by a radical-anion mechanism. The fifth method developed was the oxidative coupling polymerization of 2,6-dimethylphenol (DMP) in the presence of tetramethyl bisphenol-A (TMBPA) [Eq. (57)] [182],... [Pg.613]

Bouchard [161] developed a poly(vinyl acetate) adhesive formulation using hydrogen peroxide-zinc formaldehyde sulfoxylate as the initiator system, poly-(vinyl alcohol) and sodium decylbenzene sulfonate as the emulsification system, and lauryl peroxide dissolved in the seed monomer to reduce the viscosity of the final latex (see Table XVIII). To this, from separate streams, a hydrogen peroxide solution, a sodium bicarbonate solution, and vinyl acetate are added. The final latex had a pH of 4.5 and a viscosity of 7 cP at 25°C. [Pg.262]

Cellulose nitrate is derived from cellulose, a natural polymer. The first truly man-made plastic came 41 years later (in 1909) when Dr. Leo Hendrick Baekeland developed phenol-formaldehyde plastics (phenolics), the source of such diverse materials as electric iron and cookware handles, grinding wheels, and electrical plugs. Other polymers — cellulose acetate (toothbrushes, combs, cutlery handles, eyeglass frames) urea-formaldehyde (buttons, electrical accessories) poly(viryl ehloride) (flooring, upholstery, wire and cable insulation, shower curtains) and nylon (toothbrush bristles, stockings, surgical sutures) — followed in the 1920s. [Pg.14]

The first completely synthetic plastic, phenol-formaldehyde, was introduced by L. H. Baekeland in 1909, nearly four decades after J. W. Hyatt had developed a semisynthetic plastic—cellulose nitrate. Both Hyatt and Baekeland invented their plastics by trial and error. Thus the step from the idea of macromolecules to the reality of producing them at will was still not made. It had to wait till the pioneering work of Hermann Staudinger, who, in 1924, proposed linear molecular structures for polystyrene and natural rubber. His work brought recognition to the fact that the macromolecules really are linear polymers. After this it did not take long for other materials to arrive. In 1927 poly(vinyl chloride) (PVC) and cellulose acetate were developed, and 1929 saw the introduction of urea-formaldehyde (UF) resins. [Pg.381]


See other pages where Poly formaldehyde development is mentioned: [Pg.460]    [Pg.453]    [Pg.453]    [Pg.146]    [Pg.36]    [Pg.30]    [Pg.445]    [Pg.37]    [Pg.111]    [Pg.205]    [Pg.358]    [Pg.334]    [Pg.73]    [Pg.703]    [Pg.201]    [Pg.149]    [Pg.496]    [Pg.1368]    [Pg.221]    [Pg.225]    [Pg.53]    [Pg.469]    [Pg.556]    [Pg.298]    [Pg.18]    [Pg.247]    [Pg.276]    [Pg.381]    [Pg.40]    [Pg.15]    [Pg.327]    [Pg.456]    [Pg.220]    [Pg.3]    [Pg.5]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Poly development

Poly-formaldehyde

© 2024 chempedia.info