Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly flame resistance

Molybdenum Oxides. Molybdenum was one of the first elements used to retard the flames of ceUulosics (2). Mote recently it has been used to impart flame resistance and smoke suppression to plastics (26). Molybdic oxide, ammonium octamolybdate, and zinc molybdate ate the most widely used molybdenum flame retardants. Properties ate given in Table 5. These materials ate recommended almost exclusively for poly(vinyl chloride), its alloys, and unsaturated polyesters (qv). [Pg.458]

Poly(vinyl chloride). PVC is a hard, brittle polymer that is self-extinguishing. In order to make PVC useful and more pHable, plasticizers (qv) are added. More often than not the plasticizers are flammable and make the formulation less flame resistant. Flammability increases as the plasticizer is increased and the relative amount of chlorine decreased, as shown in Table 7. The flame resistance of the poly(vinyl chloride) can be increased by the addition of an inorganic flame-retardant synergist. [Pg.459]

Antimony Oxide. The effect of antimony trioxide on the oxygen index of flexible poly(vinyl chloride) containing from 20 to 50 parts of plasticizer is shown in Figure 2. The flame resistance as measured by the oxygen index increases with the addition of antimony oxide until the oxygen index appears to reach a maximum at about 8 parts of Sb202. Further addition of antimony oxide does not have any increased beneficial effect. [Pg.459]

In addition to carbon and glass fibers ia composites, aramid and polyimide fibers are also used ia conjunction with epoxy resias. Safety requirements by the U.S. Federal Aeronautics Administration (FAA) have led to the development of flame- and heat-resistant seals and stmctural components ia civiUan aircraft cabias. Wool blend fabrics containing aramids, poly(phenylene sulfide), EDF, and other inherently flame-resistant fibers and fabrics containing only these highly heat- and flame-resistant fibers are the types most frequently used ia these appHcations. [Pg.72]

Alkenylsuccinic anhydrides made from several linear alpha olefins are used in paper sizing, detergents, and other uses. Sulfosuccinic acid esters serve as surface active agents. Alkyd resins (qv) are used as surface coatings. Chlorendric anhydride [115-27-5] is used as a flame resistant component (see Flame retardants). Tetrahydrophthalic acid [88-98-2] and hexahydrophthalic anhydride [85-42-7] have specialty resin appHcations. Gas barrier films made by grafting maleic anhydride to polypropylene [25085-53-4] film are used in food packaging (qv). Poly(maleic anhydride) [24937-72-2] is used as a scale preventer and corrosion inhibitor (see Corrosion and corrosion control). Maleic anhydride forms copolymers with ethylene glycol methyl vinyl ethers which are partially esterified for biomedical and pharmaceutical uses (189) (see Pharmaceuticals). [Pg.461]

Plastic Sheet. Poly(methyl methacrylate) plastic sheet is manufactured in a wide variety of types, including cleat and colored transparent, cleat and colored translucent, and colored semiopaque. Various surface textures ate also produced. Additionally, grades with improved weatherabiUty (added uv absorbers), mat resistance, crazing resistance, impact resistance, and flame resistance ate available. Selected physical properties of poly(methyl methacrylate) sheet ate Hsted in Table 12 (102). [Pg.269]

Vinylidene Chloride Copolymer Latex. Vinyhdene chloride polymers are often made in emulsion, but usuaUy are isolated, dried, and used as conventional resins. Stable latices have been prepared and can be used direcdy for coatings (171—176). The principal apphcations for these materials are as barrier coatings on paper products and, more recently, on plastic films. The heat-seal characteristics of VDC copolymer coatings are equaUy valuable in many apphcations. They are also used as binders for paints and nonwoven fabrics (177). The use of special VDC copolymer latices for barrier laminating adhesives is growing, and the use of vinyhdene chloride copolymers in flame-resistant carpet backing is weU known (178—181). VDC latices can also be used to coat poly(ethylene terephthalate) (PET) bottles to retain carbon dioxide (182). [Pg.442]

If we consider the LOI values reported in Table 8, it can be clearly seen that the flame resistance of polyphosphazenes is very high and can reach values above 60 when halogenated phenoxy groups (e.g. 4-bromophenoxy) are attached to the polymer chain. However, enhancement of the carbon content in the materials (i.e. by increasing the percentage of organic substituents in the chain) induces a concurrent decrease in the flame resistance of POPs, which can be depressed to 23.4 in the case of poly[bis(4-/sopropylphenoxy)phos-phazene]. [Pg.191]

They also synthesized polymeric iniferters containing the disulfide moiety in the main chain [149,150]. As shown in Eq. (30),polyphosphonamide,which was prepared by the polycondensation reaction of phenyl phosphoric dichloride with piperadine, was allowed to react with carbon disulfide in the presence of triethylamine, followed by oxidative coupling to yield the polymeric iniferter 32. These polymeric iniferters were used for the synthesis of block copolymers with St or MMA, with the composition and block lengths controlled by the ratio of the concentration of the polymeric iniferter to the monomer or by conversion. The block copolymers of polyphosphonamide with poly(St) or poly(MMA) were found to have improved flame resistance characteristics. [Pg.93]

Poly(benzimidazole)s possess excellent thermal stability, flame resistance, and outstanding chemical resistance. The solubility of hexafluoroisopropyli-dene-unit-containing poly(benzimidazole)s is remarkably improved.24 They are readily soluble in strong acids such as formic acid, concentrated sulfuric acid, and methanesulfonic acid and in aprotic polar solvents such as DMAc and NMP. The polymer from tetramine (23) is soluble even in m-cresol and pyridine. [Pg.146]

The heat distortion temperature of impact-resistant polystyrene may also be improved by polymer blends. Those of impact-resistant polystyrene with poly-2,5-dimethylphenylene-1,4-oxide (PPO) are particularly interesting (90). Polystyrene and PPO are molecularly compatible and mixtures of them have glass transition temperatures which vary virtually linearly with composition. A further advantage of these compositions which should not be under-estimated is their better flame resistance. [Pg.280]

Poly( j-phenylene isophthalamide) (structure 4.59), sold under the trade name Nomex, exhibits good thermal stability decomposing above 370°C. It is used in flame-resistant clothing. It is also used in the form of thin pads to protect sintered silica-fiber mats from stress and vibrations during the flight of the space shuttle ... [Pg.107]

Because of the angled structure of poly(arylene ether sulfone)s, they generally do not crystallize. They are thus amorphous and optically transparent with glass transition temperatures between 150-200 °C. They are soluble in some polar solvents, hydrolysis resistant, and inherently flame resistant. Fields of application for these materials are found particularly in the area of electronics and membrane technology. [Pg.309]

Numerous condensation polymers such as polyamides (75MI11103) containing the pyridine nucleus in the backbone have been prepared from the corresponding pyridine diesters or diacid chlorides. The Knoevenagel condensation (Scheme 32) has provided another way of incorporating the pyridine nucleus into a condensation framework. Poly(styrylpyridines) (116) have been found to exhibit exceptional flame resistance and are useful in reinforced composites (79USP4163740). [Pg.286]

Examples of fluoroplastics include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), ethylene—chlorotrifluoroethylene (ECTFE), ethylene—tetrafluoroethylene (ETFE), poly(vinylidene fluoride) (PVDF), etc (see Fluorine compounds, organic). These polymers have outstanding electrical properties, such as low power loss and dielectric constant, coupled with very good flame resistance and low smoke emission during fire. Therefore, in spite of their relatively high price, they are used extensively in telecommunication wires, especially for production of plenum cables. Plenum areas provide a convenient, economical way to run electrical wires and cables and to interconnect them throughout nonresidential buildings (14). Development of special flame-retardant low smoke compounds, some based on PVC, have provided lower cost competition to the fluoroplastics for indoors application such as plenum cable, Riser Cables, etc. [Pg.327]

Borazine is isoelectronic and isostructural with benzene. Poly(borazylene), a polymer of borazine and its derivatives, is reported extensively as a precursor of BN-coated ceramic libers.86 Polymeric borazine oxide derivative is claimed to be flame resistant (Figure 9.10).87... [Pg.225]

Conventional ABS polymers are blends of poly (styrene-coacrylonitrile) with either poly (butadiene-coacrylonitrile) or a graft of poly-(styrene-coacrylonitrile) onto a rubbery spine. To confer flame-resistance on either ABS system using DBPF as a fourth monomer, the major component should be a styrene-acrylonitrile-DBPF terpolymer since the resinous component is the major one. The composition of such a terpolymer is restricted by two considerations (1) it should contain sufficient acrylonitrile to impart the resistance to solvent attack which is characteristic of ABS polymers, and (2) the amount of DBPF should be sufficient to give a useful level of flame resistance. [Pg.556]

Use of bis(2,3-dibromopropyl) fumarate as a fourth monomer in either nitrile rubber- or graft-type ABS materials gives flame-resistant polymers. With either type, better impact strength is obtained when the fourth monomer is present in both the rubber and resin phases. The compositions are more thermally stable than poly (vinyl chloride) and can be stabilized by typical PVC stabilizers. [Pg.558]


See other pages where Poly flame resistance is mentioned: [Pg.487]    [Pg.70]    [Pg.327]    [Pg.68]    [Pg.441]    [Pg.433]    [Pg.296]    [Pg.172]    [Pg.273]    [Pg.46]    [Pg.185]    [Pg.73]    [Pg.358]    [Pg.326]    [Pg.278]    [Pg.266]    [Pg.266]    [Pg.87]    [Pg.93]    [Pg.30]    [Pg.441]    [Pg.273]    [Pg.387]    [Pg.483]    [Pg.252]    [Pg.99]    [Pg.231]    [Pg.786]    [Pg.312]    [Pg.433]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Chlorinated poly , flame resistance

Flame resistance

Poly resist

© 2024 chempedia.info