Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resist poly

Poly(methyl methacrylate) Cast sheet Impact- modified Heat- resistant ... [Pg.1028]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Fig. 3. Chemistry of dichromated poly(vinyl alcohol) resist. Initially the dichromate ion absorbs light the light-activated species undergoes an... Fig. 3. Chemistry of dichromated poly(vinyl alcohol) resist. Initially the dichromate ion absorbs light the light-activated species undergoes an...
Poly(vinyl cinnamate) Resists. Dichromated resists exhibit numerous shortcomings which include lot-to-lot variabiUty of the components, aging of the formulated resists in solution and in coated form, poor process stabiUty (due to a sensitivity to variations in temperature and humidity), and intrinsically low photosensitivity requiring long exposure times for adequate insolubilization. [Pg.115]

Fig. 4. Chemistry of poly(vinyl cinnamate) negative-acting resist. Initial light absorption by the photosensitizer is followed by energy transfer to produce a pendant cinnamate group in a triplet electronic state. This combines with a second cinnamate on another polymer chain, forming a polymer—polymer... Fig. 4. Chemistry of poly(vinyl cinnamate) negative-acting resist. Initial light absorption by the photosensitizer is followed by energy transfer to produce a pendant cinnamate group in a triplet electronic state. This combines with a second cinnamate on another polymer chain, forming a polymer—polymer...
Under conditions of extreme acidity or alkalinity, acryhc ester polymers can be made to hydroly2e to poly(acryhc acid) or an acid salt and the corresponding alcohol. However, acryhc polymers and copolymers have a greater resistance to both acidic and alkaline hydrolysis than competitive poly(vinyl acetate) and vinyl acetate copolymers. Even poly(methyl acrylate), the most readily hydroly2ed polymer of the series, is more resistant to alkah than poly(vinyl acetate) (57). Butyl acrylate copolymers are more hydrolytically stable than ethyl acrylate copolymers (58). [Pg.164]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Polyimide. Polyimide is a biaxiaHy oriented high performance film that is tough, flexible, and temperature- and combustion-resistant. Its room temperature properties compare to poly(ethylene terephthalate), but it retains these good characteristics at temperatures above 400°C. Its electrical resistance is good and it is dimensionally stable. The principal detriment is fairly high moisture absorbance. The main uses are for electrical insulation, particularly where high temperatures are prevalent or ionizing radiation is a problem. The films may be coated to reduce water absorption and enhance... [Pg.377]

Molybdenum Oxides. Molybdenum was one of the first elements used to retard the flames of ceUulosics (2). Mote recently it has been used to impart flame resistance and smoke suppression to plastics (26). Molybdic oxide, ammonium octamolybdate, and zinc molybdate ate the most widely used molybdenum flame retardants. Properties ate given in Table 5. These materials ate recommended almost exclusively for poly(vinyl chloride), its alloys, and unsaturated polyesters (qv). [Pg.458]

Poly(vinyl chloride). PVC is a hard, brittle polymer that is self-extinguishing. In order to make PVC useful and more pHable, plasticizers (qv) are added. More often than not the plasticizers are flammable and make the formulation less flame resistant. Flammability increases as the plasticizer is increased and the relative amount of chlorine decreased, as shown in Table 7. The flame resistance of the poly(vinyl chloride) can be increased by the addition of an inorganic flame-retardant synergist. [Pg.459]

Antimony Oxide. The effect of antimony trioxide on the oxygen index of flexible poly(vinyl chloride) containing from 20 to 50 parts of plasticizer is shown in Figure 2. The flame resistance as measured by the oxygen index increases with the addition of antimony oxide until the oxygen index appears to reach a maximum at about 8 parts of Sb202. Further addition of antimony oxide does not have any increased beneficial effect. [Pg.459]

The Fe, Co, and Ni deposits are extremely fine grained at high current density and pH. Electroless nickel, cobalt, and nickel—cobalt alloy plating from fluoroborate-containing baths yields a deposit of superior corrosion resistance, low stress, and excellent hardenabiUty (114). Lead is plated alone or ia combination with tin, iadium, and antimony (115). Sound iasulators are made as lead—plastic laminates by electrolyticaHy coating Pb from a fluoroborate bath to 0.5 mm on a copper-coated nylon or polypropylene film (116) (see Insulation, acoustic). Steel plates can be simultaneously electrocoated with lead and poly(tetrafluoroethylene) (117). Solder is plated ia solutioas containing Pb(Bp4)2 and Sn(Bp4)2 thus the lustrous solder-plated object is coated with a Pb—Sn alloy (118). [Pg.168]

The presence of carbon—fluorine bonds in organic polymers is known to characteristically impart polymer stabiUty and solvent resistance. The poly(fluorosibcones) are siloxane polymers with fluorinated organic substituents bonded to siUcon. Poly(fluorosibcones) have unique appHcations resulting from the combination provided by fluorine substitution into a siloxane polymer stmcture (see Silicon compounds, silicones). [Pg.399]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

Polyester. Poly(ethylene terephthalate) [25038-59-9] (PET) polyester film has intermediate gas- and water- vapor barrier properties, very high tensile and impact strengths, and high temperature resistance (see Polyesters, thermoplastic). AppHcations include use as an outer web in laminations to protect aluminum foil. It is coated with PVDC to function as the flat or sealing web for vacuum/gas flush packaged processed meat, cheese, or fresh pasta. [Pg.452]

Poly(vinylidene chloride). Poly(viayHdene chloride) [9002-85-1] (PVDC), most of which is produced by Dow Chemical, is best known in its saran or PVC-copolymerized form (see Vinylidene chloride and poly(VINYLIDENE chloride)). As solvent or emulsion coating, PVDC imparts high oxygen, fat, aroma, and water-vapor resistance to substrates such as ceUophane, oriented polypropylene, polyester, and nylon. [Pg.452]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Polybenzimidazole (PBI) Fibers. Poly(2,2 -(y -phenylene)-5,5 -bisbenzimidazole) [25734-65-0] is a textile fiber marketed by Hoechst-Celanese (11) which does not form Hquid crystalline solutions due to its bent meta backbone monomeric component. PBI has exceUent resistance to high temperature and chemicals. [Pg.67]


See other pages where Resist poly is mentioned: [Pg.18]    [Pg.335]    [Pg.1012]    [Pg.114]    [Pg.115]    [Pg.115]    [Pg.118]    [Pg.123]    [Pg.128]    [Pg.207]    [Pg.209]    [Pg.172]    [Pg.186]    [Pg.198]    [Pg.198]    [Pg.198]    [Pg.233]    [Pg.450]    [Pg.510]    [Pg.282]    [Pg.377]    [Pg.378]    [Pg.378]    [Pg.469]    [Pg.487]    [Pg.379]    [Pg.382]    [Pg.361]    [Pg.535]    [Pg.65]    [Pg.68]    [Pg.70]   
See also in sourсe #XX -- [ Pg.91 , Pg.93 , Pg.151 ]




SEARCH



Abrasion-resistant Poly(tetrafluoroethylene) Blends

Chlorinated poly , flame resistance

Electron beam resists poly

Electron-beam resist poly

Ester-protected poly based resists

Impact resistance modified poly

Materials properties, impact resistance modified poly

Negative electron beam resist poly

Negative resists cyclized poly

Negative working resist poly

Poly , chain scission positive resists

Poly , cross-linking negative electron resists

Poly , positive resists

Poly , resists patterns

Poly -bisazide negative resists

Poly [methyl swelling resistance

Poly chemical resistance

Poly degradation resistance

Poly extraction resistance

Poly flame resistance

Poly heat resistance

Poly impact resistance

Poly organic resist materials

Poly organic-inorganic composite resists

Poly radiation resistant polymers

Poly resist design

Poly resist electron micrographs

Poly resist profiles

Poly resist system

Poly resistive property

Poly resists, exposure

Poly resists, exposure characteristics

Poly resists, sensitivity

Poly sulfones chemicals, resistance

Poly sulfones hydrolysis, resistance

Poly terpolymer resist

Poly-4-vinylphenol resistance

Positive electron-beam resist poly

Positive resist poly

Radiation resistance, poly

Radiation resistance, poly derivatives

Resist ester-protected poly based

Resistivity poly acetals

Three-dimensional structure poly resist

© 2024 chempedia.info