Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly control

As discussed in section A 1.2.17. the existence of the approximate poly ad numbers, corresponding to short-time bottlenecks to energy flow, could be very important in efforts for laser control, apart from the separate question of bifiircation phenomena. [Pg.78]

The earliest SFA experiments consisted of bringing the two mica sheets into contact m a controlled atmosphere (figure Bl.20.61 or (confined) liquid medium [14, 27, 73, 74 and 75]. Later, a variety of surfactant layers [76, 77], polymer surfaces [5, 9, fO, L3, 78], poly electrolytes [79], novel materials [ ] or... [Pg.1738]

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

The molecular weight of a polymer can be controlled through the use of a chain-transfer agent, as well as by initiator concentration and type, monomer concentration, and solvent type and temperature. Chlorinated aUphatic compounds and thiols are particularly effective chain-transfer agents used for regulating the molecular weight of acryUc polymers (94). Chain-transfer constants (C at 60°C) for some typical agents for poly(methyl acrylate) are as follows (87) ... [Pg.167]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

The film tube is collapsed within a V-shaped frame of rollers and is nipped at the end of the frame to trap the air within the bubble. The nip roUs also draw the film away from the die. The draw rate is controlled to balance the physical properties with the transverse properties achieved by the blow draw ratio. The tube may be wound as such or may be sHt and wound as a single-film layer onto one or more roUs. The tube may also be direcdy processed into bags. The blown film method is used principally to produce polyethylene film. It has occasionally been used for polypropylene, poly(ethylene terephthalate), vinyls, nylon, and other polymers. [Pg.380]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Poly(ethylene oxide). The synthesis and subsequent hydrolysis and condensation of alkoxysilane-terniinated macromonomers have been studied (39,40). Using Si-nmr and size-exclusion chromatography (sec) the evolution of the siUcate stmctures on the alkoxysilane-terniinated poly(ethylene oxide) (PEO) macromonomers of controlled functionahty was observed. Also, the effect of vitrification upon the network cross-link density of the developing inorganic—organic hybrid using percolation and mean-field theory was considered. [Pg.329]

Synthesis. The synthesis of poly(dichlotophosphazene) [25034-79-17, (N=PCl2) (4), the patent polymer to over 300 macromolecules of types (1) and (2), is carried out via controlled, ring-opening polymerization of the corresponding cycHc trimer, (N=PCl2)3 [940-71 -6]. [Pg.256]

Lead sesquioxide is used as an oxidation catalyst for carbon monoxide ia exhaust gases (44,45) (see Exhaust control), as a catalyst for the preparation of lactams (46) (see Antibiotics, P-lactams), ia the manufacture of high purity diamonds (47) (see Carbon, diamond-natural), ia fireproofing compositions for poly(ethylene terephthalate) plastics (48), ia radiation detectors for x-rays and nuclear particles (49), and ia vulcanization accelerators for neoprene mbber (50). [Pg.69]

Alkenylsuccinic anhydrides made from several linear alpha olefins are used in paper sizing, detergents, and other uses. Sulfosuccinic acid esters serve as surface active agents. Alkyd resins (qv) are used as surface coatings. Chlorendric anhydride [115-27-5] is used as a flame resistant component (see Flame retardants). Tetrahydrophthalic acid [88-98-2] and hexahydrophthalic anhydride [85-42-7] have specialty resin appHcations. Gas barrier films made by grafting maleic anhydride to polypropylene [25085-53-4] film are used in food packaging (qv). Poly(maleic anhydride) [24937-72-2] is used as a scale preventer and corrosion inhibitor (see Corrosion and corrosion control). Maleic anhydride forms copolymers with ethylene glycol methyl vinyl ethers which are partially esterified for biomedical and pharmaceutical uses (189) (see Pharmaceuticals). [Pg.461]

AppHcation of an adhesion-promoting paint before metal spraying improves the coating. Color-coded paints, which indicate compatibiHty with specific plastics, can be appHed at 20 times the rate of grit blasting, typically at 0.025-mm dry film thickness. The main test and control method is cross-hatch adhesion. Among the most common plastics coated with such paints are polycarbonate, poly(phenylene ether), polystyrene, ABS, poly(vinyl chloride), polyethylene, polyester, and polyetherimide. [Pg.134]

Chain transfer to solvent is an important factor in controlling the molecular weight of polymers prepared by this method. The chain-transfer constants for poly(methyl methacrylate) in various common solvents (C) and for various chain-transfer agents are Hsted in Table 10. [Pg.266]

Short segments of poly(dG—dC) incorporated within plasmids, or citcular DNA, adopt the Z-conformation under negative superhehcal stress. This left-handed DNA may be important in genetic control. On the other hand, the stmctural alteration of the helix requited in a B-to-Z transition within a plasmid is radical, and would involve either a multistep mechanism or the complete melting and reformation of helix. The improbability of such transitions has led to questions concerning the feasibility of a biological role for Z-DNA. [Pg.250]

Thickeners. Thickeners are added to remover formulas to increase the viscosity which allows the remover to cling to vertical surfaces. Natural and synthetic polymers are used as thickeners. They are generally dispersed and then caused to swell by the addition of a protic solvent or by adjusting the pH of the remover. When the polymer swells, it causes the viscosity of the mixture to increase. Viscosity is controlled by the amount of thickener added. Common thickeners used in organic removers include hydroxypropylmethylceUulose [9004-65-3], hydroxypropylceUulose [9004-64-2], hydroxyethyl cellulose, and poly(acryHc acid) [9003-01-4]. Thickeners used in aqueous removers include acryHc polymers and latex-type polymers. Some thickeners are not stable in very acidic or very basic environments, so careful selection is important. [Pg.550]

These association reactions can be controlled. Acetone or acetonylacetone added to the solution of the polymeric electron acceptor prevents insolubilization, which takes place immediately upon the removal of the ketone. A second method of insolubiUzation control consists of blocking the carboxyl groups with inorganic cations, ie, the formation of the sodium or ammonium salt of poly(acryhc acid). Mixtures of poly(ethylene oxide) solutions with solutions of such salts can be precipitated by acidification. [Pg.342]


See other pages where Poly control is mentioned: [Pg.359]    [Pg.2270]    [Pg.2578]    [Pg.68]    [Pg.786]    [Pg.787]    [Pg.797]    [Pg.207]    [Pg.240]    [Pg.427]    [Pg.442]    [Pg.88]    [Pg.167]    [Pg.170]    [Pg.172]    [Pg.264]    [Pg.307]    [Pg.377]    [Pg.283]    [Pg.329]    [Pg.329]    [Pg.362]    [Pg.72]    [Pg.515]    [Pg.515]    [Pg.299]    [Pg.265]    [Pg.269]    [Pg.179]    [Pg.182]    [Pg.308]    [Pg.377]    [Pg.259]    [Pg.281]    [Pg.314]   


SEARCH



Controlled Pore Glass poly

Poly , controlled

Poly , controlled refractive index

Poly , controlled refractive index polymer

Poly conjugation control

Poly controlled anionic

Poly controlled molecular weight

Poly derivative interface control

Poly electrolysis, controlled potential

Poly silanes group control

© 2024 chempedia.info