Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical conversion separation

Section 2 combines the former separate section on Mathematics with the material involving General Information and Conversion Tables. The fundamental physical constants reflect values recommended in 1986. Physical and chemical symbols and definitions have undergone extensive revision and expansion. Presented in 14 categories, the entries follow recommendations published in 1988 by the lUPAC. The table of abbreviations and standard letter symbols provides, in a sense, an alphabetical index to the foregoing tables. The table of conversion factors has been modified in view of recent data and inclusion of SI units cross-entries for archaic or unusual entries have been curtailed. [Pg.1286]

Particle Size Reduction. Changes in the physical characteristics of a biomass feedstock often are requited before it can be used as a fuel. Particle size reduction (qv) is performed to prepare the material for direct fuel use, for fabrication into fuel pellets, or for a conversion process. Particle size of the biomass also is reduced to reduce its storage volume, to transport the material as a slurry or pneumatically, or to faciHtate separation of the components. [Pg.16]

Ratio and Multiplicative Feedforward Control. In many physical and chemical processes and portions thereof, it is important to maintain a desired ratio between certain input (independent) variables in order to control certain output (dependent) variables (1,3,6). For example, it is important to maintain the ratio of reactants in certain chemical reactors to control conversion and selectivity the ratio of energy input to material input in a distillation column to control separation the ratio of energy input to material flow in a process heater to control the outlet temperature the fuel—air ratio to ensure proper combustion in a furnace and the ratio of blending components in a blending process. Indeed, the value of maintaining the ratio of independent variables in order more easily to control an output variable occurs in virtually every class of unit operation. [Pg.71]

The special case involving the removal of a low (2—3 mol %) mole fraction impurity at high (>99 mol%) recovery is called purification separation. Purification separation typically results in one product of very high purity. It may or may not be desirable to recover the impurity in the other product. The separation methods appHcable to purification separation include equiUbrium adsorption, molecular sieve adsorption, chemical absorption, and catalytic conversion. Physical absorption is not included in this Hst as this method typically caimot achieve extremely high purities. Table 8 presents a Hst of the gas—vapor separation methods with their corresponding characteristic properties. The considerations for gas—vapor methods are as follows (26—44). [Pg.458]

There is a wide range of conversion levels. The term maximum conversion type has no precise definition but is often used to describe a level of conversion, where there is no net fuel oil manufactured. A fuel products refinery with specialities may manufacture lubricating oils, asphalts, greases, solvents, waxes and chemical feed stocks in addition to the primary fuel products. The number and diversity of products will naturally vary from one refinery to another. Refineries produce chemical feed stocks for sale to the chemical affiliates and do not have responsibility for the manufacture of chemical products directly. Both operations may be carried out at the same physical location but the corporate product responsibilities are usually separate. [Pg.209]

All refining operations may be classed as either conversion processes or separation processes. In the former, the feed undergoes a chemical reaction such as cracking, polymerization, or desulfurization. Separation processes take advantage of differences in physical properties to split the feed into two or more different products. Distillation, the most common of all refinery separation processes, uses differences in boiling points to separate hydrocarbon mixtures. [Pg.70]

The separation processes separate the constituents of crude-oil based on physical proper Conversion of one molecule into another greatly extends the usefulness of petroleum by extending [hi ige of hydrocarbon products. [Pg.289]

Chemical Precipitation. If physical separation techniques do not work, separation may be achieved by chemical conversion to a soluble precipitate. [Pg.166]

There are two main schemes proposed for sequestration of carbon dioxide. The first (referred to as a chemical absorption process), suitable for use at low pressures and temperatures, is usually adopted where the CO2 is to be removed from exhaust flue gases. The second (usually referred to as a physical absorption process), for use at higher pressures, is recommended for separation of the CO2 in syngas obtained from conversion of fuel. [Pg.136]

The area of interest covered by this paper is limited to processes in which chemical conversion occurs, as in the processes noted above. Gas-liquid-particle processes in which a gaseous phase is created by the chemical reaction between a liquid and a solid (for example, the production of acetylene by the reaction between water and carbide) are excluded from the review. Also excluded are physical separation processes, such as flotation by gas-liquid-particle operation. Gas absorption in packed beds, another gas-liquid-particle operation, is not treated explicitly, although certain results for this operation must necessarily be referred to. [Pg.73]

If the conversion is near 100 per cent it may not be worth separating and recycling the unreacted material the overall reactor yield would then include the loss of unreacted material. If the unreacted material is separated and recycled, the overall yield taken over the reactor and separation step would include any physical losses from the separation... [Pg.48]

It is the tertiary amides that tend to be the most problematic in terms of proton NMR. They usually exhibit two rotametric forms, the relative proportion of each being determined by both electronic factors and by the relative sizes of the two groups, R1 and R2. Note this in no way implies that the rotameric forms of a tertiary amide could ever be physically separated as the inter-conversion rate between the two forms is generally in the order of seconds. A 50/50 ratio of rotamers is only guaranteed where R =R2 (as in the case of a primary amide where R1=R2=H). Consider the two compounds in Structures 6.14 and 6.15. [Pg.80]

Separation of milled solid materials is usually based on differences in their physical properties. Of the various techniques to obtain ore concentrates, those of froth flotation and agglomeration exploit differences in surface activities, which in many cases appear to involve the formation of complexes at the surface of the mineral particles. Separation by froth flotation (Figure 4) depends upon conversion of water-wetted (hydrophilic) solids to nonwetted (hydrophobic) ones which are transported in an oil-based froth leaving the undesired materials (gangue) in an aqueous slurry which is drawn off from the bottom of the separator. The selective conversion of the ore particles to hydrophobic materials involves the adsorption of compounds which are usually referred to as collectors. 4... [Pg.762]

Since all the physical properties of two given enantiomers are the same in the absence of a chiral, or optically active, medium, their chromatographic resolution needs a different approach from the relatively simple separation of geometrical isomers, stereoisomers or positional isomers. Two methods are used. The older technique of indirect resolution, requires conversion of the enantiomers to diastereoisomers using a suitable chiral reagent, followed by separation of the diastereoisomers on a non-chiral GC or LC stationary phase. This technique has now been largely superseded by direct resolution, using either a chiral mobile phase (in LC) or a chiral stationary phase. A variety of types of chiral stationary phase have been developed for use in GC, LC and SFC(21 23). [Pg.1088]


See other pages where Physical conversion separation is mentioned: [Pg.565]    [Pg.5]    [Pg.162]    [Pg.48]    [Pg.311]    [Pg.365]    [Pg.2]    [Pg.128]    [Pg.49]    [Pg.424]    [Pg.135]    [Pg.149]    [Pg.353]    [Pg.135]    [Pg.455]    [Pg.963]    [Pg.377]    [Pg.140]    [Pg.146]    [Pg.448]    [Pg.115]    [Pg.290]    [Pg.6]    [Pg.132]    [Pg.319]    [Pg.98]    [Pg.154]    [Pg.14]    [Pg.215]    [Pg.381]    [Pg.169]    [Pg.104]    [Pg.193]    [Pg.248]   
See also in sourсe #XX -- [ Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 ]




SEARCH



Physical conversion

Physical separation

Physical separators

© 2024 chempedia.info