Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical Alcohols

Cox, F.W. (1979), Physical properties of gasoline-alcohol blends. US Department of Energy, Bartlesville, OK. [Pg.454]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

Fig. IV-13. Example of a p-polarized reflection spectrum from Ref. [154] for a stearyl alcohol monolayer on water. The dashed line is the baseline to be subtracted from the spectra. [Reprinted with permission from Joseph T. Buontempo and Stuart A. Rice, J. Chem. Phys. 98(7), 5835-5846 (April 1, 1993). Copyright 1993, American Institute of Physics.]... Fig. IV-13. Example of a p-polarized reflection spectrum from Ref. [154] for a stearyl alcohol monolayer on water. The dashed line is the baseline to be subtracted from the spectra. [Reprinted with permission from Joseph T. Buontempo and Stuart A. Rice, J. Chem. Phys. 98(7), 5835-5846 (April 1, 1993). Copyright 1993, American Institute of Physics.]...
Physical Properties. All colourless liquids, completely miscible with water, except benzyl alcohol and cyclohexanol, which are slightly soluble. Pure glycol and glycerol have high viscosity, which falls as the hygroscopic liquids absorb water from the air. [Pg.335]

Physical Properties, Colourless solid when pure, usually pale brown. Sparingly soluble in cold water, soluble in hot water soluble also in cold mineral acids and caustic alkalis. Dissolves readily in cold alcohol, and solution possesses a faint blue fluorescence. [Pg.383]

The production of both an alcohol and the sodium salt of an acid might easily be confused with the hydrolysis products of an ester (in the above instance benzyl benzoate). Such an error would soon be discovered (e.g., by reference to the b.p. and other physical properties), but it would lead to an unnecessary expenditure of time and energy. The above example, however, emphasises the importance of conducting the class reactions of neutral oxygen-containing compounds in the proper order, viz., (1) aldehydes and ketones, (2) esters and anhydrides, (3) alcohols, and (4) ethers. [Pg.1063]

So if one were to replace sec-butyl alcohol in the recipe above with an equimolar amount of safrole in the above reaction, Strike will wager that a positive bromination experience will occur. And all this using the very common 48% aq. HBr The oniy difference being that once the reaction mix had cooled, one should do either of two things (1) distill as described except the bromosafrole will be the last thing to come over (not the first), or (2) flood the reaction mix with water to bring the product out of solution after which it can be physically separated by decanting or sep funnel or some such shit. [Pg.151]

Physical Properties of Alcohols and Alkyl Halides Intermolecular Forces... [Pg.147]

PHYSICAL PROPERTIES OF ALCOHOLS AND ALKYL HALIDES INTERMOLECULAR FORCES... [Pg.147]

It IS instructive to compare the physical properties of ethers with alkanes and alcohols With respect to boiling point ethers resemble alkanes more than alcohols With respect to solubility m water the reverse is true ethers resemble alcohols more than alkanes Why" ... [Pg.668]

We have often seen that the polar nature of a substance can affect physical properties such as boiling point This is true for amines which are more polar than alkanes but less polar than alcohols For similarly constituted compounds alkylamines have boiling points higher than those of alkanes but lower than those of alcohols... [Pg.918]

TABLE C Selected Physical Properties of Representative Alcohols Ethers and Phenols ... [Pg.1195]

The most important physical properties of furfural, as well as similar properties for furfuryl alcohol, tetrahydrofurfuryl alcohol and furan are given in Table 1. The tabulated properties of furfural are supplemented by a plot (Fig. 1) of the vapor—Hquid compositions for the system, furfural—water (15,16). [Pg.75]

Physical Properties. Furfuryl alcohol (2-furanmethanol) [98-00-0] is aHquid, colorless, primary alcohol with a mild odor. On exposure to air, it gradually darkens in color. Furfuryl alcohol is completely miscible with water, alcohol, ether, acetone, and ethyl acetate, and most other organic solvents with the exception of paraffinic hydrocarbons. It is an exceUent, highly polar solvent, and dissolves many resins. [Pg.79]

The physical constants of furfuryl alcohol are Hsted in Table 1. When exposed to heat, acid or air the density and refractive index of furfuryl alcohol changes owing to chemical reaction (51), and the rate of change in these properties is a function of temperature and time of exposure. [Pg.79]

Physical Properties. Tetrahydrofurfuryl alcohol (2-tetrahydrofuranmethanol) [97-99-4] (20) is a colorless, high-boiling liquid with a mild, pleasant odor. It is completely miscible with water and common organic solvents. Tetrahydrofurfuryl alcohol is an excellent solvent, moderately hydrogen-bonded, essentially nontoxic, biodegradable, and has a low photochemical oxidation potential. Most appHcations make use of its high solvency. The more important physical properties of tetrahydrofurfuryl alcohol are Hsted in Table 1. [Pg.82]

The physical properties of cyanoacetic acid [372-09-8] and two of its ester derivatives are Hsted ia Table 11 (82). The parent acid is a strong organic acid with a dissociation constant at 25°C of 3.36 x 10. It is prepared by the reaction of chloroacetic acid with sodium cyanide. It is hygroscopic and highly soluble ia alcohols and diethyl ether but iasoluble ia both aromatic and aUphatic hydrocarbons. It undergoes typical nitrile and acid reactions but the presence of the nitrile and the carboxyUc acid on the same carbon cause the hydrogens on C-2 to be readily replaced. The resulting malonic acid derivative decarboxylates to a substituted acrylonitrile ... [Pg.225]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Physical properties are Hsted in Table 2. Butenediol is very soluble in water, lower alcohols, and acetone. It is nearly insoluble in aUphatic or aromatic hydrocarbons. [Pg.106]

Table 5 Hsts the principal commercially available acetylenic alcohols and glycols Tables 6 and 7 Hst the physical properties of acetylenic alcohols and glycols, respectively. Table 5 Hsts the principal commercially available acetylenic alcohols and glycols Tables 6 and 7 Hst the physical properties of acetylenic alcohols and glycols, respectively.
Residual monomers in the latex are avoided either by effectively reacting the monomers to polymer or by physical or chemical removal. The use of tert-huty peroxypivalate as a second initiator toward the end of the polymeri2ation or the use of mixed initiator systems of K2S20g and tert-huty peroxyben2oate (56) effectively increases final conversion and decreases residual monomer levels. Spray devolatili2ation of hot latex under reduced pressure has been claimed to be effective (56). Residual acrylonitrile also can be reduced by postreaction with a number of agents such as monoamines (57) and dialkylamines (58), ammonium—alkali metal sulfites (59), unsaturated fatty acids or their glycerides (60,61), their aldehydes, esters of olefinic alcohols, cyanuric acid (62,63), andmyrcene (64). [Pg.194]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

The most important polyhydric alcohols are shown in Figure 1. Each is a white soHd, ranging from the crystalline pentaerythritols to the waxy trimethylol alkyls. The trihydric alcohols are very soluble in water, as is ditrimethylol-propane. Pentaerythritol is moderately soluble and dipentaerythritol and tripen taerythritol are less soluble. Table 1 Hsts the physical properties of these alcohols. Pentaerythritol and trimethyl olpropane have no known toxic or irritating effects (1,2). Finely powdered pentaerythritol, however, may form explosive dust clouds at concentrations above 30 g/m in air. The minimum ignition temperature is 450°C (3). [Pg.463]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

Table 7. Specifications and Physical Properties of Formaldehyde—Alcohol Solutions... Table 7. Specifications and Physical Properties of Formaldehyde—Alcohol Solutions...
Physical properties of glycerol are shown in Table 1. Glycerol is completely soluble in water and alcohol, slightly soluble in diethyl ether, ethyl acetate, and dioxane, and insoluble in hydrocarbons (1). Glycerol is seldom seen in the crystallised state because of its tendency to supercool and its pronounced freesing point depression when mixed with water. A mixture of 66.7% glycerol, 33.3% water forms a eutectic mixture with a freesing point of —46.5°C. [Pg.346]


See other pages where Physical Alcohols is mentioned: [Pg.263]    [Pg.2419]    [Pg.1026]    [Pg.1046]    [Pg.1063]    [Pg.79]    [Pg.48]    [Pg.77]    [Pg.103]    [Pg.103]    [Pg.112]    [Pg.440]    [Pg.440]    [Pg.440]    [Pg.442]    [Pg.446]    [Pg.463]    [Pg.378]    [Pg.293]    [Pg.401]    [Pg.486]   
See also in sourсe #XX -- [ Pg.127 , Pg.520 ]




SEARCH



Alcohol dehydrogenase physical properties

Alcohol monomers, physical properties

Alcohol physical dependence

Alcoholism physical dependence

Alcohols physical properties

Alcohols structural and physical properties

Allyl alcohol physical properties

Butyl alcohol physical properties

Diacetone alcohol physical properties

Ethyl alcohol physical properties

Isobutyl alcohol, physical properties

Physical Properties of 2-Ethylbutyl Alcohol

Physical Properties of 91 Isopropyl Alcohol

Physical Properties of Alcohols Hydrogen Bonding

Physical Properties of Alcohols and Alkyl Halides Intermolecular Forces

Physical Properties of Alcohols and Ethers

Physical Properties of Anhydrous Isopropyl Alcohol

Physical Properties of Benzyl Alcohol

Physical Properties of Crotyl Alcohol

Physical Properties of Decyl Alcohol

Physical Properties of Furfuryl Alcohol

Physical Properties of Isodecyl Alcohol

Physical Properties of Methylamyl Alcohols

Physical Properties of Methylbutynyl Alcohol

Physical Properties of Primary n-Amyl Alcohol

Physical Properties of n-Butyl Alcohol

Physical Properties of n-Hexyl Alcohol

Physical Properties of the Sugar Alcohols

Physical properties of alcohols

Polyvinyl alcohol physical properties

Structural and Physical Properties of Alcohols

The Physical Properties of Alkanes, Alkyl Halides, Alcohols, Ethers, and Amines

© 2024 chempedia.info