Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipid molecule

Phospholipid molecules form bilayer films or membranes about 5 nm in thickness as illustrated in Fig. XV-10. Vesicles or liposomes are closed bilayer shells in the 100-1000-nm size range formed on sonication of bilayer forming amphiphiles. Vesicles find use as controlled release and delivery vehicles in cosmetic lotions, agrochemicals, and, potentially, drugs. The advances in cryoelec-tron microscopy (see Section VIII-2A) in recent years have aided their characterization [70-72]. Additional light and x-ray scattering measurements reveal bilayer thickness and phase transitions [70, 71]. Differential thermal analysis... [Pg.548]

That vesicles and liposomes form at all is a consequence of the amphi-pathic nature of the phospholipid molecule. Ionic interactions between the... [Pg.262]

In the case of prothrombin and related clotting factors, interruption of the vitamin K cycle leads to the production of nonfunctional, undercarboxylated proteins, which are duly exported from hepatocytes into blood (Thijssen 1995). They are nonfunctional because there is a requirement for the additional carboxyl residues in the clotting process. Ionized carboxyl groups can establish links with negatively charged sites on neighboring phospholipid molecules of cell surfaces via calcium bridges. [Pg.224]

Figure 41-5. Diagram of a section of a bilayer membrane formed from phospholipid molecules. The unsaturated fatty acid tails are kinked and lead to more spacing between the polar head groups, hence to more room for movement. This in turn results in increased membrane fluidity. (Slightly modified and reproduced, with permission, from Stryer L Biochemistry, 2nd ed. Freeman, 1981.)... Figure 41-5. Diagram of a section of a bilayer membrane formed from phospholipid molecules. The unsaturated fatty acid tails are kinked and lead to more spacing between the polar head groups, hence to more room for movement. This in turn results in increased membrane fluidity. (Slightly modified and reproduced, with permission, from Stryer L Biochemistry, 2nd ed. Freeman, 1981.)...
Chemically, the membrane is known to consist of phospholipids and proteins, many of which have enzymic properties. The phospholipid molecules are arranged in a bimolecular layer with the polar groups directed outwards on both sides. The structures of some phospholipids found in bacteria are shown in Fig. 1.6. Earlier views held that the protein part ofthe membrane was spread as a continuous sheet on either side ofthe... [Pg.8]

The intracellular and plasma membranes have a complex structure. The main components of a membrane are lipids (or phospholipids) and different proteins. Lipids are fatlike substances representing the esters of one di- or trivalent alcohol and two aliphatic fatty acid molecules (with 14 to 24 carbon atoms). In phospholipids, phosphoric acid residues, -0-P0(0 )-O-, are located close to the ester links, -C0-0-. The lipid or phospholipid molecules have the form of a compact polar head (the ester and phosphate groups) and two parallel, long nonpolar tails (the hydrocarbon chains of the fatty acids). The polar head is hydrophihc and readily interacts with water the hydrocarbon tails to the... [Pg.575]

Ruckenstein and Li proposed a relatively simple surface pressure-area equation of state for phospholipid monolayers at a water-oil interface [39]. The equation accounted for the clustering of the surfactant molecules, and led to second-order phase transitions. The monolayer was described as a 2D regular solution with three components singly dispersed phospholipid molecules, clusters of these molecules, and sites occupied by water and oil molecules. The effect of clusterng on the theoretical surface pressure-area isotherm was found to be crucial for the prediction of phase transitions. The model calculations fitted surprisingly well to the data of Taylor et al. [19] in the whole range of surface areas and the temperatures (Fig. 3). The number of molecules in a cluster was taken to be 150 due to an excellent agreement with an isotherm of DSPC when this... [Pg.540]

Figure 2.1 Structure of the plasma membrane. The plasma membrane is composed of a bilayer of phospholipid molecules. Associated with this bilayer are intrinsic proteins embedded within and spanning the membrane as well as intrinsic proteins found on the external or internal surface of the membrane. Molecules of cholesterol are found in the inner, nonpolar region of the membrane. Figure 2.1 Structure of the plasma membrane. The plasma membrane is composed of a bilayer of phospholipid molecules. Associated with this bilayer are intrinsic proteins embedded within and spanning the membrane as well as intrinsic proteins found on the external or internal surface of the membrane. Molecules of cholesterol are found in the inner, nonpolar region of the membrane.
The plasma membrane contains a small amount of carbohydrate (2 to 10% of the mass of the membrane) on the outer surface. This carbohydrate is found attached to most of the protein molecules, forming glycoproteins, and to some of the phospholipid molecules (<10%), forming glycolipids. Consequently, the external surface of the cell has a carbohydrate coat, or glycocalyx. [Pg.10]

The movement of substances between the blood and the extracellular fluid surrounding the cells in most tissues of the body occurs very readily. This exchange takes place at the level of the capillaries, the smallest blood vessels in the cardiovascular system whose walls are formed by a single layer of endothelial cells. Lipid-soluble substances are able to move across this layer of endothelial cells at any point because they can move directly through the plasma membrane by passing between the phospholipid molecules of the bilayer. The movement of water-soluble substances is limited to the multiple pores found between the cells however, it also takes place rapidly and efficiently. [Pg.60]

The phospholipids thus obtained are transported by lipid-carrier cytoplasmic proteins to the membranes (cellular or intracellular) to replace the used or impaired phospholipid molecules. [Pg.206]

Biotinylated liposomes usually are created by modification of PE components with an amine-reactive biotin derivative, for example NHS-LC-Biotin (Chapter 11, Section 1). The NHS ester reacts with the primary amine of PE residues, forming an amide bond linkage (Figure 22.19). A better choice of biotinylation agent may be to use the NHS-PEG -biotin compounds (Chapter 18), because the hydrophilic PEG spacer provides better accessibility in the aqueous environment than a hydrophobic biotin spacer. Since the modification occurs at the hydrophilic end of the phospholipid molecule, after vesicle formation the biotin component protrudes out from the liposomal surface. In this configuration, the surface-immobilized biotins are able to bind (strept)avidin molecules present in the outer aqueous medium. [Pg.883]

Phospholipid molecules of membranes from neurons and glial cells store a wide variety of lipid messengers. Receptor-mediated events and changes in [Ca2+]i, such as occur during excitatory neurotransmission and activity-depen-dent synaptic plasticity, activate phospholipases that catalyze the release of bioactive moieties from phospholipids, which then participate in intra- and/or intercellular signaling pathways. [Pg.579]

The internal hydrophobic core of lipospheres is composed of fats and biodegradable polymers, mainly triglycerides and lactide-based polymers, whereas the surface activity of liposphere particles is provided by the surrounding lecithin layer, composed of phospholipid molecules. [Pg.3]

All liposphere formulations prepared remained stable during the 3-month period of the study, and no phase separation or appearance of aggregates were observed. The difference between polymeric lipospheres and the standard liposphere formulations is the composition of the internal core of the particles. Standard lipospheres, such as those previously described, consist of a solid hydrophobic fat core composed of neutral fats like tristearin, whereas, in the polymeric lipospheres, biodegradable polymers such as polylactide or polycaprolactone were substituted for the triglycerides. Both types of lipospheres are thought to be stabilized by one layer of phospholipid molecules embedded in their surface. [Pg.6]

Israeli et al. [3.31] found, that trehalose is a very good stabilizer for E, even if the freeze dried suspension of E was stored at 21 °C and 60 % relative humidity, and/or was exposed to visible light. In 3 h, the survival rate decreased without trehalose to 0.01 % under the influence of light and air, with trehalose, 35 % survived. The optimum trehalose concentration was found to be 100 mM. This corresponded with the number of trehalose molecules necessary to replace the water molecules in the outer membrane of the phospholipid molecules. [Pg.217]

As lipophilic anchors, we chose modifications with long acyl and alkyl chains, preferably of similar chain lengths as the phospholipids to allow optimal alignment with the phospholipids molecules of the liposome bilayers. [Pg.52]

Figure 1 Schematic structures of micelle and liposome, their formation and loading with a contrast agent, (a) A micelle is formed spontaneously in aqueous media from an amphiphilic compound (1) that consists of distinct hydrophilic (2) and hydrophobic (3) moieties. Hydrophobic moieties form the micelle core (4). Contrast agent (asterisk gamma- or MR-active metal-loaded chelating group, or heavy element, such as iodine or bromine) can be directly coupled to the hydrophobic moiety within the micelle core (5), or incorporated into the micelle as an individual monomeric (6) or polymeric (7) amphiphilic unit, (b) A liposome can be prepared from individual phospholipid molecules (1) that consists of a bilayered membrane (2) and internal aqueous compartment (3). Contrast agent (asterisk) can be entrapped in the inner water space of the liposome as a soluble entity (4) or incorporated into the liposome membrane as a part of monomeric (5) or polymeric (6) amphiphilic unit (similar to that in case of micelle). Additionally, liposomes can be sterically protected by amphiphilic derivatization with PEG or PEG-like polymer (7) [1]. Figure 1 Schematic structures of micelle and liposome, their formation and loading with a contrast agent, (a) A micelle is formed spontaneously in aqueous media from an amphiphilic compound (1) that consists of distinct hydrophilic (2) and hydrophobic (3) moieties. Hydrophobic moieties form the micelle core (4). Contrast agent (asterisk gamma- or MR-active metal-loaded chelating group, or heavy element, such as iodine or bromine) can be directly coupled to the hydrophobic moiety within the micelle core (5), or incorporated into the micelle as an individual monomeric (6) or polymeric (7) amphiphilic unit, (b) A liposome can be prepared from individual phospholipid molecules (1) that consists of a bilayered membrane (2) and internal aqueous compartment (3). Contrast agent (asterisk) can be entrapped in the inner water space of the liposome as a soluble entity (4) or incorporated into the liposome membrane as a part of monomeric (5) or polymeric (6) amphiphilic unit (similar to that in case of micelle). Additionally, liposomes can be sterically protected by amphiphilic derivatization with PEG or PEG-like polymer (7) [1].
For pure phosphatidylcholine bilayers, the orientation of the headgroup has been well characterized showing that headgroups are aligned approximately parallel to the bilayer surface. Because only one phosphorus with 100% natural abundance is contained in the phospholipid molecule, NMR has become an important tool to study the phospholipid headgroup structure and dynamics. ... [Pg.188]

There is an abrupt decrease in the lateral diffusion coefficient of DPPC upon the phase transition from the GI phase to the Gi phase. This is because the acyl-chain region is being packed even more efficiently in the Gi phase than in the GI phase, and the hydrocarbon volume in the Gi phase is smaller than in the GI phase. Also, in the Gi phase, the lipid acyl-chains from the opposing bilayer leaflets interdigitate. In order for a phospholipid molecule to diffuse it has to circumvent the nearby interdigitated molecules which hinder diffusion. [Pg.193]

Every cell possesses a plasma (or cell) membrane which isolates its contents from its surroundings. This membrane consists of a double layer of phospholipid molecules with proteins attached or dispersed within. The uneven distribution of proteins and their ability to move in the plane of the membrane led to the description of this structure as a fluid mosaic (Figure 1.2) (Chapter 5). Some of these proteins facilitate the transport of molecules and ions through the membrane, while others are receptors for extracellular molecules which provide information about conditions in adjacent cells, blood and elsewhere in the body. Physical or chemical damage to these membranes can render them leaky so that, for example, Na and Ca ions, the concentrations of which are much higher in the extracellular fluid, can enter the cell causing damage. On the outer surface of... [Pg.4]

The composition of the membrane is about half phospholipid and half protein. In an aqueous medium, phospholipid molecules associate in such a way that their hydrophobic tails exclude water molecules, whereas the hydrophilic heads orient towards the water molecules (Figure 5.1). The result is two layers of phospholipid molecules the outer... [Pg.85]

The phospholipid molecules are such that in aqueous media they spontaneously form extended bilayers with a hydrophobic core. Although membrane proteins vary enormously they all form compact structures. This minimises the surface of interaction with the lipid, so that, although protein may account for 30-80% of the weight of the membrane, it does not affect the basic physical properties of the lipid bilayer. [Pg.239]


See other pages where Phospholipid molecule is mentioned: [Pg.144]    [Pg.464]    [Pg.466]    [Pg.365]    [Pg.201]    [Pg.422]    [Pg.267]    [Pg.325]    [Pg.199]    [Pg.868]    [Pg.103]    [Pg.6]    [Pg.727]    [Pg.2]    [Pg.3]    [Pg.237]    [Pg.229]    [Pg.100]    [Pg.249]    [Pg.32]    [Pg.71]    [Pg.102]    [Pg.589]    [Pg.164]    [Pg.182]    [Pg.190]    [Pg.86]   
See also in sourсe #XX -- [ Pg.199 ]

See also in sourсe #XX -- [ Pg.16 , Pg.17 ]

See also in sourсe #XX -- [ Pg.376 ]

See also in sourсe #XX -- [ Pg.117 , Pg.362 ]




SEARCH



© 2024 chempedia.info