Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface pressure area

Fig. XV-14. Surface pressure-area isotherms at 298 K for a DPPC monolayer on phos-photungstic acid (10 Af) at the pH values shown with 10 A/ NaCl added. (From Ref. 123.)... Fig. XV-14. Surface pressure-area isotherms at 298 K for a DPPC monolayer on phos-photungstic acid (10 Af) at the pH values shown with 10 A/ NaCl added. (From Ref. 123.)...
Ruckenstein and Li proposed a relatively simple surface pressure-area equation of state for phospholipid monolayers at a water-oil interface [39]. The equation accounted for the clustering of the surfactant molecules, and led to second-order phase transitions. The monolayer was described as a 2D regular solution with three components singly dispersed phospholipid molecules, clusters of these molecules, and sites occupied by water and oil molecules. The effect of clusterng on the theoretical surface pressure-area isotherm was found to be crucial for the prediction of phase transitions. The model calculations fitted surprisingly well to the data of Taylor et al. [19] in the whole range of surface areas and the temperatures (Fig. 3). The number of molecules in a cluster was taken to be 150 due to an excellent agreement with an isotherm of DSPC when this... [Pg.540]

We studied the surface pressure area isotherms of PS II core complex at different concentrations of NaCl in the subphase (Fig. 2). Addition of NaCl solution greatly enhanced the stability of monolayer of PS II core complex particles at the air-water interface. The n-A curves at subphases of 100 mM and 200 mM NaCl clearly demonstrated that PS II core complexes can be compressed to a relatively high surface pressure (40mN/m), before the monolayer collapses under our experimental conditions. Moreover, the average particle size calculated from tt-A curves using the total amount of protein complex is about 320 nm. This observation agrees well with the particle size directly observed using atomic force microscopy [8], and indicates that nearly all the protein complexes stay at the water surface and form a well-structured monolayer. [Pg.643]

FIG. 2 The surface pressure-area isotherms of PS II core complex with different concentrations of salt in the subphase. Subphase, lOmM tris-HCl, pH 8.0, 2mM sodium ascorbate and concentrations of 100, 200, and 500mM NaCl. Temperature, 23.0 0.5°C. [Pg.643]

Our studies on the surface pressure-area isotherms of MGDG and the mixture of PS II core complex and MGDG indicate the presence of both PS II core complex and MGDG in the monolayer. MGDG molecules diluted the PS II core complex concentration in the monolayer. MGDG lipid functions as a support for the protein complex and the resulting mixture forms higher-quality films than PS II core complex alone. [Pg.644]

FIG. 3 The surface pressure-area (jt A) and surface potential-area (AV-A) isotherms of PSII membranes. [Pg.645]

Fig. 5 Surface pressure/area isotherm for the compression cycle of dipalmitoylphos-phatidyl choline (dashed line) and l-palmitoyl-2-(l2-hydroxystearoyl)phosphatidyl choline (solid line) on a pure water subphase at 25°C. Reprinted with permission from Arnett et al., 1989. Copyright 1989 American Chemical Society. Fig. 5 Surface pressure/area isotherm for the compression cycle of dipalmitoylphos-phatidyl choline (dashed line) and l-palmitoyl-2-(l2-hydroxystearoyl)phosphatidyl choline (solid line) on a pure water subphase at 25°C. Reprinted with permission from Arnett et al., 1989. Copyright 1989 American Chemical Society.
Fig. 17 Surface pressure/area isotherms for the compression and expansion cycles of racemic (dashed line) and enantiomeric (solid line) stearoylserine (A), stearoyl-alanine (B), stearoyltryptophan (C), and stearoyltyrosine methyl esters (D) on a pure water subphase at 25°C carried out at a compression rate of 7.1 A2/molecule per minute. Arrows indicate the direction of compression and expansion. Fig. 17 Surface pressure/area isotherms for the compression and expansion cycles of racemic (dashed line) and enantiomeric (solid line) stearoylserine (A), stearoyl-alanine (B), stearoyltryptophan (C), and stearoyltyrosine methyl esters (D) on a pure water subphase at 25°C carried out at a compression rate of 7.1 A2/molecule per minute. Arrows indicate the direction of compression and expansion.
Fig. 22 Surface pressure/area isotherms for the compression cycles of stearoyltyrosine on a buffered pH 6.86 subphase carried out at a compression rate of 19.24 A2/molecule per minute at 16,19,22,25,28, 31, and 34°C. Reprinted with permission from Harvey et ah, 1990. Copyright 1990 American Chemical Society. Fig. 22 Surface pressure/area isotherms for the compression cycles of stearoyltyrosine on a buffered pH 6.86 subphase carried out at a compression rate of 19.24 A2/molecule per minute at 16,19,22,25,28, 31, and 34°C. Reprinted with permission from Harvey et ah, 1990. Copyright 1990 American Chemical Society.
Fig. 24 Surface pressure/area isotherms for palmitic acid/stearoylserine methyl ester films at 25°C on a pure water subphase and compressed at 29.8 A2/molecules per minute. A, 16.7-33.3% B, 50% C, 66.6% D, 83.3% SSME. Fig. 24 Surface pressure/area isotherms for palmitic acid/stearoylserine methyl ester films at 25°C on a pure water subphase and compressed at 29.8 A2/molecules per minute. A, 16.7-33.3% B, 50% C, 66.6% D, 83.3% SSME.
Fig. 32 Surface pressure/area isotherms for the compression/expansion cycles of diastereomeric monolayers of (R or S)-iV-(a-methylbenzyl)stearamides mixed 1 1 with (R or S )-stearoylalanine methyl esters on a pure water subphase at 35°C. Dashed lines denote heterochiral pairs (R S or R S) and solid lines denote homochiral pairs (R R or S S ). Fig. 32 Surface pressure/area isotherms for the compression/expansion cycles of diastereomeric monolayers of (R or S)-iV-(a-methylbenzyl)stearamides mixed 1 1 with (R or S )-stearoylalanine methyl esters on a pure water subphase at 35°C. Dashed lines denote heterochiral pairs (R S or R S) and solid lines denote homochiral pairs (R R or S S ).
Fig. 38 Surface pressure/area isotherms for the compression/expansion cycles of meso- (dashed line) and ( )-(solid line) azobis-[6-(6-cyanododecanoic acid)] on a pH 3 subphase at 22°C. Compressed at a rate of 15.5 A2/molecule per minute. Reprinted with permission from Porter et al., 1986a. Copyright 1986 American Chemical Society. Fig. 38 Surface pressure/area isotherms for the compression/expansion cycles of meso- (dashed line) and ( )-(solid line) azobis-[6-(6-cyanododecanoic acid)] on a pH 3 subphase at 22°C. Compressed at a rate of 15.5 A2/molecule per minute. Reprinted with permission from Porter et al., 1986a. Copyright 1986 American Chemical Society.
Fig. 45 Surface pressure/area isotherms for the compression cycle of 12-ketooctadecanoic acid (A) and octadecanoic acid (B) on a buffered subphase (AR hydrochloric acid pH 4.0) at 30°C carried out at a compression rate of 2.0-3.0 A2/molecule per minute. Fig. 45 Surface pressure/area isotherms for the compression cycle of 12-ketooctadecanoic acid (A) and octadecanoic acid (B) on a buffered subphase (AR hydrochloric acid pH 4.0) at 30°C carried out at a compression rate of 2.0-3.0 A2/molecule per minute.
The surface pressure-area (tc-A) isotherm measurements and LB film transfer were performed with the use of a KSV 5000 minitrough (KSV Instrument Co., Finland) operated at a continuous speed for two barriers of 10 cm2/min at 20°C. The buffer used in the present work was composed of 10 mM MES, 2 mM ascorbic acid sodium salt, and a given concentration of salt or polymers (pH =7.0). The accuracy of the surface pressure measurement was 0.01 mN/m. Monolayers of the PS I were transferred at 10 mN/m on hydrophobic substrate surface by horizontal lifting method. [Pg.162]

Figure 17 shows the chemical structures of anionic amphiphile sodium-1,2-bis (tetradecylcarbonyl)ethane-l-sulfonate (2Cj4SNa)[34] and poly(ethyleneimine)(PEI). A benzene/ethanol (9 1)(WV) solution of anionic amphiphile was spread on the pure water surface or the PEI-water solution (lxlO5 unit M in monomer unit, pH=3.2) surface at a subphase temperature, Tsp of 293 K. At this pH, ca. 70 % of nitrogen atom in PEI molecule was protonated[35]. Surface pressure-area(ji-A) isotherms were measured with a microprocessor controlled film balance system. [Pg.28]

Figure 4. Surface pressure - area isotherms of TFPP monolayers at 20 °C. Figure 4. Surface pressure - area isotherms of TFPP monolayers at 20 °C.
Figure 8. Surface pressure - area isotherms for stearylamine before (a) and after (b) adsorption of IgG at pH 8, 20 °C, and schematic representation for IgG molecule adsorbed to stearylamine monolayer. Figure 8. Surface pressure - area isotherms for stearylamine before (a) and after (b) adsorption of IgG at pH 8, 20 °C, and schematic representation for IgG molecule adsorbed to stearylamine monolayer.
Figure 12. Surface pressure - area isotherms (20 °C) of P-CDNHC12H25 monolayers included and/or adsorbed 1-NaphSC>3 at the air/aqueous solution interface under the different initial surface pressures ... Figure 12. Surface pressure - area isotherms (20 °C) of P-CDNHC12H25 monolayers included and/or adsorbed 1-NaphSC>3 at the air/aqueous solution interface under the different initial surface pressures ...
Figure 34. Surface pressure - area isotherms for monolayers of Ci 8TCNQ (a), the mixture of the dihydrothiophene and G 8TCNQ (b), and the complex (c), spread on distilled water, as compared with that on the aqueous subphase with 10 5M LiTCNQ (c ). Figure 34. Surface pressure - area isotherms for monolayers of Ci 8TCNQ (a), the mixture of the dihydrothiophene and G 8TCNQ (b), and the complex (c), spread on distilled water, as compared with that on the aqueous subphase with 10 5M LiTCNQ (c ).
Fig.3. Surface pressure-area isotherms of azobenzene-linked amphiphiles 1 ... Fig.3. Surface pressure-area isotherms of azobenzene-linked amphiphiles 1 ...
The polymer forms a stable monolayer on the surface of water. The surface pressure-area diagram of the monolayer is shown in Figure 7.1, where the surface area S is calculated per ionic side group. The collapse pressure ofthe monolayer is equal to 54 mN/m. [Pg.103]


See other pages where Surface pressure area is mentioned: [Pg.214]    [Pg.541]    [Pg.642]    [Pg.646]    [Pg.119]    [Pg.83]    [Pg.86]    [Pg.89]    [Pg.92]    [Pg.100]    [Pg.105]    [Pg.112]    [Pg.300]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Area curve, surface pressure

Lecithins, surface pressure area

Lecithins, surface pressure area isotherms

Monolayers surface pressure—area isotherm

Skill 4.1d-Explain how factors such as temperature, pressure, and surface area affect the dissolving process

Sodium octadecyl sulfate surface pressure-area

Surface pressure

Surface pressure area isotherms

Surface pressure versus area isotherms

Surface pressure-area diagrams

Surface pressure-area isotherms sodium octadecyl sulfate

Surface pressure-area isotherms surfactants

Surface pressure-area monolayers spread

Surface pressure-area relationships

Surface pressure-molecular area

Surface pressure-molecular area isotherm

Surface pressure-molecular area isothermal curv

© 2024 chempedia.info