Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic core

Proteins often have the same high-affinity isotherms as do synthetic polymers and are also slow to equilibrate, due to many contacts with the surface. Proteins, however, have the additional complication that they can partially or completely unfold at the solid-liquid interface to expose their hydrophobic core units to a hydrophobic surface... [Pg.404]

Ithough knowledge-based potentials are most popular, it is also possible to use other types potential function. Some of these are more firmly rooted in the fundamental physics of iteratomic interactions whereas others do not necessarily have any physical interpretation all but are able to discriminate the correct fold from decoy structures. These decoy ructures are generated so as to satisfy the basic principles of protein structure such as a ose-packed, hydrophobic core [Park and Levitt 1996]. The fold library is also clearly nportant in threading. For practical purposes the library should obviously not be too irge, but it should be as representative of the different protein folds as possible. To erive a fold database one would typically first use a relatively fast sequence comparison lethod in conjunction with cluster analysis to identify families of homologues, which are ssumed to have the same fold. A sequence identity threshold of about 30% is commonly... [Pg.562]

Simple considerations show that the membrane potential cannot be treated with computer simulations, and continuum electrostatic methods may constimte the only practical approach to address such questions. The capacitance of a typical lipid membrane is on the order of 1 j.F/cm-, which corresponds to a thickness of approximately 25 A and a dielectric constant of 2 for the hydrophobic core of a bilayer. In the presence of a membrane potential the bulk solution remains electrically neutral and a small charge imbalance is distributed in the neighborhood of the interfaces. The membrane potential arises from... [Pg.143]

WA Lim, A Hodel, RT Sauer, FM Richards. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc Natl Acad Sci USA 91 423-427, 1994. PB Harbury, B Tidor, PS Kim. Repacking proteins cores with backbone freedom Structure prediction for coiled coils. Pi oc Natl Acad Sci USA 92 8408-8412, 1995. [Pg.307]

The secondary structure elements, formed in this way and held together by the hydrophobic core, provide a rigid and stable framework. They exhibit relatively little flexibility with respect to each other, and they are the best-defined parts of protein structures determined by both x-ray and NMR techniques. Functional groups of the protein are attached to this framework, either directly by their side chains or, more frequently, in loop regions that connect sequentially adjacent secondary structure elements. We will now have a closer look at these structural elements. [Pg.14]

Calcium-binding residues are brown, and residues that form the hydrophobic core of the motif are light green. The helix-loop-helix region shown underneath is colored as in Figure 2.13. [Pg.26]

Figure 3.3 Schematic diagram showing the packing of hydrophobic side chains between the two a helices in a coiled-coil structure. Every seventh residue in both a helices is a leucine, labeled "d." Due to the heptad repeat, the d-residues pack against each other along the coiled-coil. Residues labeled "a" are also usually hydrophobic and participate in forming the hydrophobic core along the coiled-coil. Figure 3.3 Schematic diagram showing the packing of hydrophobic side chains between the two a helices in a coiled-coil structure. Every seventh residue in both a helices is a leucine, labeled "d." Due to the heptad repeat, the d-residues pack against each other along the coiled-coil. Residues labeled "a" are also usually hydrophobic and participate in forming the hydrophobic core along the coiled-coil.
In the heptad sequence ate close to the hydrophobic core and can form salt bridges between the two a helices of a colled-coll structure, the e-resldue In one helix with the g-resldue In the second and vice versa. [Pg.37]

Figure 3.S Schematic diagram of packing side chains In the hydrophobic core of colled-coll structures according to the "knobs In holes" model. The positions of the side chains along the surface of the cylindrical a helix Is pro-jected onto a plane parallel with the heUcal axis for both a helices of the coiled-coil. (a) Projected positions of side chains in helix 1. (b) Projected positions of side chains in helix 2. (c) Superposition of (a) and (b) using the relative orientation of the helices In the coiled-coil structure. The side-chain positions of the first helix, the "knobs," superimpose between the side-chain positions In the second helix, the "holes." The green shading outlines a d-resldue (leucine) from helix 1 surrounded by four side chains from helix 2, and the brown shading outlines an a-resldue (usually hydrophobic) from helix 1 surrounded by four side chains from helix 2. Figure 3.S Schematic diagram of packing side chains In the hydrophobic core of colled-coll structures according to the "knobs In holes" model. The positions of the side chains along the surface of the cylindrical a helix Is pro-jected onto a plane parallel with the heUcal axis for both a helices of the coiled-coil. (a) Projected positions of side chains in helix 1. (b) Projected positions of side chains in helix 2. (c) Superposition of (a) and (b) using the relative orientation of the helices In the coiled-coil structure. The side-chain positions of the first helix, the "knobs," superimpose between the side-chain positions In the second helix, the "holes." The green shading outlines a d-resldue (leucine) from helix 1 surrounded by four side chains from helix 2, and the brown shading outlines an a-resldue (usually hydrophobic) from helix 1 surrounded by four side chains from helix 2.
Figure 3.6 Four-helix bundles frequently occur as domains in a proteins. The arrangement of the a helices is such that adjacent helices in the amino acid sequence are also adjacent in the three-dimensional structure. Some side chains from all four helices are buried in the middle of the bundle, where they form a hydrophobic core, (a) Schematic representation of the path of the polypeptide chain in a four-helrx-bundle domain. Red cylinders are a helices, (b) Schematic view of a projection down the bundle axis. Large circles represent the main chain of the a helices small circles are side chains. Green circles are the buried hydrophobic side chains red circles are side chains that are exposed on the surface of the bundle, which are mainly hydrophilic. Figure 3.6 Four-helix bundles frequently occur as domains in a proteins. The arrangement of the a helices is such that adjacent helices in the amino acid sequence are also adjacent in the three-dimensional structure. Some side chains from all four helices are buried in the middle of the bundle, where they form a hydrophobic core, (a) Schematic representation of the path of the polypeptide chain in a four-helrx-bundle domain. Red cylinders are a helices, (b) Schematic view of a projection down the bundle axis. Large circles represent the main chain of the a helices small circles are side chains. Green circles are the buried hydrophobic side chains red circles are side chains that are exposed on the surface of the bundle, which are mainly hydrophilic.
Figure 3.8 Schematic diagram of the dimeric Rop molecule. Each subunit comprises two a helices arranged in a coiled-coil structure with side chains packed into the hydrophobic core according to the "knobs in holes" model. The two subunits are arranged in such a way that a bundle of four a helices is formed. Figure 3.8 Schematic diagram of the dimeric Rop molecule. Each subunit comprises two a helices arranged in a coiled-coil structure with side chains packed into the hydrophobic core according to the "knobs in holes" model. The two subunits are arranged in such a way that a bundle of four a helices is formed.
The globin fold has been used to study evolutionary constraints for maintaining structure and function. Evolutionary divergence is primarily constrained by conservation of the hydrophobicity of buried residues. In contrast, neither conserved sequence nor size-compensatory mutations in the hydrophobic core are important. Proteins adapt to mutations in buried residues by small changes of overall structure that in the globins involve movements of entire helices relative to each other. [Pg.45]

Since the side chains of consecutive amino acids of a p strand are on opposite sides of the P sheet, every second residue of the p strands contributes to this hydrophobic shell. The other side chains of the P strands point inside the barrel to form a hydrophobic core this core is therefore comprised exclusively of side chains of P-strand residues (Figure 4.3). [Pg.49]

Figure 4.3 In most a/p-barrel structures the eight p strands of the barrel enclose a tightly packed hydrophobic core formed entirely by side chains from the p strands. The core is arranged in three layers, with each layer containing four side chains from alternate p strands. The schematic diagram shows this packing arrangement in the a/p barrel of the enzyme glycolate oxidase, the structure of which was determined by Carl Branden and colleagues in Uppsala, Sweden. Figure 4.3 In most a/p-barrel structures the eight p strands of the barrel enclose a tightly packed hydrophobic core formed entirely by side chains from the p strands. The core is arranged in three layers, with each layer containing four side chains from alternate p strands. The schematic diagram shows this packing arrangement in the a/p barrel of the enzyme glycolate oxidase, the structure of which was determined by Carl Branden and colleagues in Uppsala, Sweden.
There is one exception to the rule that requires bulky hydrophobic residues to fill the interior of eight-stranded a/p barrels in order to form a tightly packed hydrophobic core. The coenzyme Biz-dependent enzyme methylmalonyl-coenzyme A mutase, the x-ray structure of which was determined by Phil Evans and colleagues at the MRC Laboratory of Molecular... [Pg.50]

Each repeat forms a right-handed P-loop-a structure similar to those found in the two other classes of a/p structures described earlier. Sequential p-loop-a repeats are joined together in a similar way to those in the a/P-bar-rel stmctures. The P strands form a parallel p sheet, and all the a helices are on one side of the P sheet. However, the P strands do not form a closed barrel instead they form a curved open stmcture that resembles a horseshoe with a helices on the outside and a p sheet forming the inside wall of the horseshoe (Figure 4.11). One side of the P sheet faces the a helices and participates in a hydrophobic core between the a helices and the P sheet the other side of the P sheet is exposed to solvent, a characteristic other a/p structures do not have. [Pg.55]

The leucine residues in this leucine-rich motif form a hydrophobic core between the P sheet and the a helices. Leucine residues 2, 5, and 7 (see Figure... [Pg.55]

Figure 4.12 Schematic diagram illustrating the role of the conserved leucine residues (green) in the leucine-rich motif in stabilizing the P-loop-(x structural module. In the ribonuclease inhibitor, leucine residues 2, 5, and 7 from the P strand pack against leucine residues 17, 20, and 24 from the a helix as well as leucine residue 12 from the loop to form a hydrophobic core between the P strand and the a helix. Figure 4.12 Schematic diagram illustrating the role of the conserved leucine residues (green) in the leucine-rich motif in stabilizing the P-loop-(x structural module. In the ribonuclease inhibitor, leucine residues 2, 5, and 7 from the P strand pack against leucine residues 17, 20, and 24 from the a helix as well as leucine residue 12 from the loop to form a hydrophobic core between the P strand and the a helix.
Third, in open-sheet structures the a helices are packed against both sides of the p sheet. Each p strand thus contributes hydrophobic side chains to pack against a helices in two similar hydrophobic core regions, one on each side of the p sheet. [Pg.57]

In these p-helix structures the polypeptide chain is coiled into a wide helix, formed by p strands separated by loop regions. In the simplest form, the two-sheet p helix, each turn of the helix comprises two p strands and two loop regions (Figure 5.28). This structural unit is repeated three times in extracellular bacterial proteinases to form a right-handed coiled structure which comprises two adjacent three-stranded parallel p sheets with a hydrophobic core in between. [Pg.84]

Lim, W.A., Sauer, R.T. Alternative packing arrangements in the hydrophobic core of X repressor. Nature 339 ... [Pg.148]

Residues 3, 5, 6, and 8 in the N-terminal arm lie in the minor groove and form contacts with either the edge of the bases or with the DNA backbone. Almost all homeodomains contain four conserved residues, Asn 51, Arg 53, Trp 48 and Phe 49, in the middle of the long recognition helix. The first two conserved polar residues interact with DNA. The second two are part of the hydrophobic core of the homeodomain, and are important for the accurate positioning of the recognition helix and the N-terminal arm with respect to... [Pg.161]


See other pages where Hydrophobic core is mentioned: [Pg.535]    [Pg.351]    [Pg.200]    [Pg.205]    [Pg.219]    [Pg.196]    [Pg.201]    [Pg.201]    [Pg.205]    [Pg.210]    [Pg.210]    [Pg.147]    [Pg.295]    [Pg.383]    [Pg.14]    [Pg.14]    [Pg.14]    [Pg.21]    [Pg.25]    [Pg.35]    [Pg.36]    [Pg.43]    [Pg.50]    [Pg.51]    [Pg.56]    [Pg.70]    [Pg.90]    [Pg.117]    [Pg.142]   
See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.24 , Pg.532 , Pg.533 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.75 , Pg.488 ]

See also in sourсe #XX -- [ Pg.63 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.10 , Pg.183 , Pg.198 , Pg.200 ]

See also in sourсe #XX -- [ Pg.36 , Pg.102 , Pg.117 ]

See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Bilayer hydrophobic core

Dendritic structures hydrophobic core

Hydrophobic core block

Hydrophobic core, repacking

Membrane hydrophobic core

Proteins hydrophobic core

© 2024 chempedia.info