Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol formaldehyde resins production

We learned much from nature with these early attempts to produce useful polymer products based on modified, or reconstituted ( semisynthetic ) natural polymers, and many of these processes are still in use today. The first of the purely synthetic commercial polymers came with the small-scale introduction of Bakelite in 1907. This phenol-formaldehyde resin product was developed by Leon Baekeland. It rapidly became a commercial reality with the formation of The General Bakelite Company by Baekeland, and construction of a larger plant at Perth Amboy, New Jersey, in 1910. At about this time styrene was being combined with dienes in the early commercialization of processes to produce synthetic rubber. Polystyrene itself was not a commercial product in Germany until 1930 and in the U.S.A. in 1937. The only other purely synthetic polymers that made a commercial appearance during this early development period were polyvinyl chloride and polyvinyl acetate, both in the early 1920s. [Pg.670]

Table 1.1 (see page 8) shows that polymerization reactions featured in by far the most incidents, followed by nitration, sulphonation and hydrolysis reactions. Of the polymerization reactions, 20% involved phenol-formaldehyde condensations. In view of the number of incidents with phenol-formaldehyde resin production the British Plastics Federation (BPF) came forward with an exemplary approach to the problem in its publication Guidelines for the Safe... [Pg.7]

The primary causes of accidents in the chemical industry are technical failures, human failures and the chemical reaction itself (due to lack of knowledge of the thermochemistry and the reaction kinetics) [156]. As discussed previously, polymerization reactions are subject to thermal runaway, so that it is not surprising to learn that polymerization reactions (64 from 134 cases) are more prone than other processes to serious accidents [157]. Among the polymerization processes, the phenol-formaldehyde resin production seems to be the worst case, although incidents have been reported for vinyl chloride, vinyl acetate and polyester resins polymerization processes. [Pg.336]

Urea formaldehyde resins are water soluble and usually sold as aqueous solutions. They are low eost and have a clean colorless appearance. The resin can cme at room temperature using catalysts such as ammonium chloride and sulphur, but the eured adhesives have poor water resistance compared widi phenol formaldehyde resin products. [Pg.317]

Amino and Phenolic Resins. The largest use of formaldehyde is in the manufacture of urea—formaldehyde, phenol—formaldehyde, and melamine—formaldehyde resins, accounting for over one-half (51%) of the total demand (115). These resins find use as adhesives for binding wood products that comprise particle board, fiber board, and plywood. Plywood is the largest market for phenol—formaldehyde resins particle board is the largest for urea—formaldehyde resins. Under certain conditions, urea—formaldehyde resins may release formaldehyde that has been alleged to create health or environmental problems (see Amino RESINS AND PLASTICS). [Pg.497]

Quinone dioximes, alkylphenol disulfides, and phenol—formaldehyde reaction products are used to cross-link halobutyl mbbers. In some cases, nonhalogenated butyl mbber can be cross-linked by these materials if there is some other source of halogen in the formulation. Alkylphenol disulfides are used in halobutyl innerliners for tires. Methylol phenol—formaldehyde resins are used for heat resistance in tire curing bladders. Bisphenols, accelerated by phosphonium salts, are used to cross-link fluorocarbon mbbers. [Pg.225]

Prior to 1890, formaldehyde was not commercially available [2]. Thus the first phenol-formaldehyde resins were made using formaldehyde equivalents such as methylene diacetate or methylal [2,20]. The first true phenol-formaldehyde resin was made by Kleeberg at the direction of Emil Fisher in 1891 [2,21]. Saliginen (o-hydroxymethyl phenol) was recognized as a condensation product of phenol and formaldehyde in 1894 and was the subject of United States patents in 1894 and 1896 [22,23]. [Pg.870]

Phenol-formaldehyde resins are the oldest thermosetting polymers. They are produced by a condensation reaction between phenol and formaldehyde. Although many attempts were made to use the product and control the conditions for the acid-catalyzed reaction described by Bayer in 1872, there was no commercial production of the resin until the exhaustive work by Baekeland was published in 1909. In this paper, he describes the product as far superior to amber for pipe stem and similar articles, less flexible but more durable than celluloid, odorless, and fire-resistant. ° The reaction between phenol and formaldehyde is either base or acid catalyzed, and the polymers are termed resols (for the base catalyzed) and novalacs (for the acid catalyzed). [Pg.346]

Phenolics are also used in a variety of other applications such as adhesives, paints, laminates for building, automobile parts, and ion exchange resins. Global production of phenol-formaldehyde resins exceeded 5 billion pounds in 1997. [Pg.348]

Acid Curing. Urea-formaldehyde resins and resol-phenol-formaldehyde resins can be acid-cured by wastes from the production of maleic anhydride [1902]. The waste from the production of maleic anhydride contains up to 50% maleic anhydride, in addition to phthalic anhydride, citraconic anhydride, benzoic acid, o-tolulic acid, and phthalide. The plugging solution is prepared by mixing a urea-formaldehyde resin with a phenol-formaldehyde resin, adding the waste from production of maleic anhydride, and mixing thoroughly. [Pg.278]

V. B. Zhukhovitskij, M. I. Kolomoets, and A. M. Zagrudnyj. Polymeric plugging solution contains urea-formaldehyde resin, expandable resol-phenol-formaldehyde resin containing surfactant and aluminium powder, and maleic anhydride production waste. Patent SU 1728473-A, 1992. [Pg.480]

Substance made of giant molecules formed by the union of simple molecules (monomers) for example, polymerization of ethylene forms a polyethylene chain, or condensation of phenol and formaldehyde (with production of water) forms phenol-formaldehyde resins. [Pg.153]

The two major uses of phenol in 1995 were the production of bisphenol-A (35%) and the production of phenolic resins (34%) (CMR 1996). The largest use for bisphenol-A is as an intermediate in the production of epoxy resins (Thurman 1982). Phenol-formaldehyde resins comprise over 95% of this market (Thurman 1982). The plywood adhesive industry required 26% of the total production of phenolic resins in 1977. These low-cost, versatile, thermoset resins have other major uses in the construction, automotive, and appliance industries (Thurman 1982). [Pg.159]

The polymerization of phenols or aromatic amines is applied in resin manufacture and the removal of phenols from waste water. Polymers produced by HRP-catalyzed coupling of phenols in non-aqueous media are potential substitutes for phenol-formaldehyde resins [123,124], and the polymerized aromatic amines find applications as conductive polymers [112]. Phenols and their resins are pollutants in aqueous effluents derived from coal conversion, paper-making, production of semiconductor chips, and the manufacture of resins and plastics. Their transformation by peroxidase and hydrogen peroxide constitutes a convenient, mild and environmentally acceptable detoxification process [125-127]. [Pg.90]

To produce composites, a binder rather than a size is usually required. A variety of high-temperature, high-strength compounds now available facilitate comparability of the fibers with matrix compounds. Insulation fibrous glass has been paired with phenol formaldehyde resins and a mineral oil lubricant. The binder may be up to 12 percent by weight of the final product (Barnhart, 1976). The composite compositions are discretely different from those of textiles in which fiber coatings are usually less than 0.5 percent of the total. [Pg.84]

Ammonia and ammonium persulfate can also be used as reagents (21). However, as pointed out by Nimz (48) and other authors, owing to the non-uniformity of the product, only 15% of urea-formaldehyde and 25% phenol-formaldehyde resin binder may be replaced by calcium base spent sulfite liquors. [Pg.204]

It has been demonstrated that red oak OSL could be used to replace 35% to 40% of the phenol (or phenolic resin solids) in phenol-formaldehyde resins used to laminate maple wood and to bond southern pine flake boards (wafer-board and/or strandboard) without adversely affecting the physical bond properties. While this pulping process and by-product lignin do not commercially exist at this time in the United States, lignins from such processes are projected to cost 40% to 50% less than phenol as a polymer raw material. [Pg.333]

The importance of crosslinked polymers, since the discovery of cured phenolic formaldehyde resins and vulcanized rubber, has significantly grown. Simultaneously, the understanding of the mechanism of network formation, the chemical structure of crosslinked systems and the motional properties at the molecular level, which are responsible for the macroscopic physical and mechanical properties, did not accompany the rapid growth of their commercial production. The insolubility of polymer networks made impossible the structural analysis by NMR techniques, although some studies had been made on the swollen crosslinked polymers. [Pg.8]

The mechanical degradation and production of macroradicals can also be performed by mastication of polymers brought into a rubbery state by admixture with monomer several monomer-polymer systems were examined (10, 11). This technique was for instance studied for the cold mastication of natural rubber or butadiene copolymers in the presence of a vinyl monomer (13, 31, 52). The polymerization of methyl methacrylate or styrene during the mastication of natural rubber has yielded copolymers which remain soluble up to complete polymerization vinyl acetate, which could not produce graft copolymers by the chain transfer technique, failed also in this mastication procedure. Block and graft copolymers were also prepared by cross-addition of the macroradicals generated by the cold milling and mastication of mixtures of various elastomers and polymers, such as natural rubber/polymethyl methacrylate (74), natural rubber/butadiene-styrene rubbers (76) and even phenol-formaldehyde resin/nitrile rubber (125). [Pg.194]

Processing of phenol-aldehyde oligomers into various articles is based on a polycondensation reaction which leads to solidification of the material at temperatures below 200°C and pressures exceeding 10 MPa. The process is accompanied by volatile product formation. However, phenol-formaldehyde resins of the resol type can be cast without additional pressure and heat. The raw molding reactants contain different organic and mineral fillers and other additives in addition to the basic resin. [Pg.8]


See other pages where Phenol formaldehyde resins production is mentioned: [Pg.136]    [Pg.553]    [Pg.136]    [Pg.553]    [Pg.304]    [Pg.326]    [Pg.515]    [Pg.1073]    [Pg.782]    [Pg.301]    [Pg.266]    [Pg.275]    [Pg.578]    [Pg.321]    [Pg.77]    [Pg.58]    [Pg.129]    [Pg.286]    [Pg.300]    [Pg.232]    [Pg.96]    [Pg.92]    [Pg.306]    [Pg.9]    [Pg.937]    [Pg.178]    [Pg.215]    [Pg.265]   
See also in sourсe #XX -- [ Pg.346 , Pg.347 ]




SEARCH



Formaldehyde production

Formaldehyde products

Formaldehyde resin

Phenol formaldehyd

Phenol resin

Phenol, production

Phenol-Formaldehyde (Phenolics)

Phenol-formaldehyde

Phenol-formaldehyde resin

Phenol-formaldehyde resin, pyrolysis products

Phenol/formaldehyde products

Phenolic resins

Phenolic-formaldehyde resins

Phenols 10 Product

Resin products

© 2024 chempedia.info