Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase separation ternary system

Different phase separated morphologies can be found in different polymer solvent systems. The pattern formation consists of several stages. In the initial stage, phase separation results in a layered morphology of the two solvent swollen phases. As more solvent evaporates, this double layer is destabilized in two ways (1) capillary instability of the interface, and (2) surface instability. Each of the mechanisms results in different morphological length scales. Core shell spherical domains in phase-separated ternary systems have also been found. The shell thickness can be a few nanometers. [Pg.154]

This problem was resolved by Nakae et al. [7] using non-polar octadecylsilica as the stationary phase and a solution of 0.1 M of sodium perchlorate in methanol/water (80 20) as the mobile phase. The ternary system (water-alcohol-salt), previously used by Fudano and Konishi [8] as an eluent for the separation of ionic surfactants at higher concentrations, induced the so-called salting out effect . The addition of the organic solvent to the water modified the polarity of the eluent and produced a good separation within a short period of time [9]. It also has the function of dissociating the surfactant micelles in individual molecules that are dissolved in the eluent [8], The presence of the salt (NaC104) in the mobile phase has a considerable influence on... [Pg.119]

In the absence of special syimnetry, the phase mle requires a minimum of tliree components for a tricritical point to occur. Synnnetrical tricritical points do have such syimnetry, but it is easiest to illustrate such phenomena with a tme ternary system with the necessary syimnetry. A ternary system comprised of a pair of enantiomers (optically active d- and /-isomers) together with a third optically inert substance could satisfy this condition. While liquid-liquid phase separation between enantiomers has not yet been found, ternary phase diagrams like those shown in figure A2.5.30 can be imagined in these diagrams there is a necessary syimnetry around a horizontal axis that represents equal amounts of the two enantiomers. [Pg.658]

Emulsions formed from immiscible organic liquids in aqueous peroxide mixtures may behave in the same way as miscible organic liquids, but if the emulsion breaks and separation of the organic phase occurs, passage into an explosive region of the peroxide-water-organic liquid ternary system may occur, and this is potentially very dangerous. [Pg.1634]

A schematic illustration of the method, and of the correlation between binary phase diagram and the one-phase layers formed in a diffusion couple, is shown in Fig. 2.42 adapted from Rhines (1956). The one-phase layers are separated by parallel straight interfaces, with fixed composition gaps, in a sequence dictated by the phase diagram. The absence, in a binary diffusion couple, of two-phase layers follows directly from the phase rule. In a ternary system, on the other hand (preparing for instance a diffusion couple between a block of a binary alloy and a piece of a third... [Pg.64]

Stein et al. (2005) observed also that, in binary and ternary systems, the homogeneity regions of different Laves phases are generally separated by two-phase fields which are very narrow and of difficult determination. [Pg.181]

For a binary mixture under constant pressure conditions the vapour-liquid equilibrium curve for either component is unique so that, if the concentration of either component is known in the liquid phase, the compositions of the liquid and of the vapour are fixed. It is on the basis of this single equilibrium curve that the McCabe-Thiele method was developed for the rapid determination of the number of theoretical plates required for a given separation. With a ternary system the conditions of equilibrium are more complex, for at constant pressure the mole fraction of two of the components in the liquid phase must be given before the composition of the vapour in equilibrium can be determined, even for an ideal system. Thus, the mole fraction yA in the vapour depends not only on X/ in the liquid, but also on the relative proportions of the other two components. [Pg.599]

The activity coefficients can be calculated using any of the existing models if the binary parameters for all combinations of binary pairs are known. These parameters are obtained by fitting to experimental data. For ternary systems, one can either simultaneously fit all six parameters or first determine the parameters using binary data for those binary systems that have a phase separation and the rest of the parameters from ternary data. [Pg.428]

The behaviour of ternary systems consisting of two polymers and a solvent depends largely on the nature of interactions between components (1-4). Two types of limiting behaviour can be observed. The first one occurs in non-polar systems, where polymer-polymer interactions are very low. In such systems a liquid-liquid phase separation is usually observed each liquid phase contains almost the total quantity of one polymer species. The second type of behaviour often occurs in aqueous polymer solutions. The polar or ionic water-soluble polymers can interact to form macromolecular aggregates, occasionally insoluble, called "polymer complexes". Examples are polyanion-polycation couples stabilized through electrostatic interactions, or polyacid-polybase couples stabilized through hydrogen bonds. [Pg.72]

This phase separation suggests a new approach to the problem of tertiary oil recovery. We can use such binary systems to dissolve the oil at low temperature and then recover a good part of the oil simply by raising the temperature some 20 to 30 degrees. This is based on the assumption that, at high temperature, ternary systems will also tend to separate into two phases, one of which would be very rich in oil. This should be especially useful for the lighter... [Pg.35]

Knowledge of the expressions for the chemical potentials of each of the components allows theoretical prediction of the critical concentration boundaries of the phase diagram for ternary solutions of biopolymeri + biopolymer2 + solvent. According to Prigogine and Defay (1954), a sufficient condition for material stability of this multicomponent system in relation to phase separation at constant temperature and pressure is the following set of inequalities for all the components of the system ... [Pg.90]

There is, however, another statement of the necessary and sufficient condition of thermodynamic stability of the multicomponent system in relation to mutual diffusion and phase separation that is less stringent than equation (3.20) because it may be fulfilled not for every component of the multicomponent system. For example, in the case of the ternary system biopolymeri + biopolymer2 + solvent, it appears enough to fulfil only two of the inequalities (Prigogine and Defay, 1954)... [Pg.90]

Figure 3.3 Illustration of the calculation of the phase diagram of a mixed biopolymer solution from the experimentally determined osmotic second virial coefficients. The phase diagram of the ternary system glycinin + pectinate + water (pH = 8.0, 0.3 mol/dm3 NaCl, 0.01 mol/dm3 mercaptoethanol, 25 °C) —, experimental binodal curve —, calculated spinodal curve O, experimental critical point A, calculated critical point O—O, binodal tielines AD, rectilinear diameter,, the threshold of phase separation (defined as the point on the binodal curve corresponding to minimal total concentration of biopolymer components). Reproduced from Semenova et al. (1990) with permission. Figure 3.3 Illustration of the calculation of the phase diagram of a mixed biopolymer solution from the experimentally determined osmotic second virial coefficients. The phase diagram of the ternary system glycinin + pectinate + water (pH = 8.0, 0.3 mol/dm3 NaCl, 0.01 mol/dm3 mercaptoethanol, 25 °C) —, experimental binodal curve —, calculated spinodal curve O, experimental critical point A, calculated critical point O—O, binodal tielines AD, rectilinear diameter,, the threshold of phase separation (defined as the point on the binodal curve corresponding to minimal total concentration of biopolymer components). Reproduced from Semenova et al. (1990) with permission.
Edmond, E., Ogston, A. (1968). An approach to the study of phase separation in ternary aqueous systems. Biochemistry Journal, 109, 569-576. [Pg.110]

These phase diagrams were assessed accurately in preliminary studies, since the phase separation method is based on the precipitation of a shell material from the phase behavior of the ternary system. Actually, the core material served as a poor solvent for the shell polymer. During evaporation of the solvent, a precipitation of the shell polymer on the surface of core droplets occurs. [Pg.242]

The basic for developing a high pressure liquid extraction unit is the phase equilibrium for the (at least) ternary system, made up of compound A and compound B, which have to be separated by the supercritical fluid C. Changing pressure and temperature influences on one hand the area of the two phase region, where extraction takes place, and on the other hand the connodes, representing the equilibrium between extract and raffinate phase. [Pg.396]

In a blend of immiscible homopolymers, macrophase separation is favoured on decreasing the temperature in a blend with an upper critical solution temperature (UCST) or on increasing the temperature in a blend with a lower critical solution temperature (LCST). Addition of a block copolymer leads to competition between this macrophase separation and microphase separation of the copolymer. From a practical viewpoint, addition of a block copolymer can be used to suppress phase separation or to compatibilize the homopolymers. Indeed, this is one of the main applications of block copolymers. The compatibilization results from the reduction of interfacial tension that accompanies the segregation of block copolymers to the interface. From a more fundamental viewpoint, the competing effects of macrophase and microphase separation lead to a rich critical phenomenology. In addition to the ordinary critical points of macrophase separation, tricritical points exist where critical lines for the ternary system meet. A Lifshitz point is defined along the line of critical transitions, at the crossover between regimes of macrophase separation and microphase separation. This critical behaviour is discussed in more depth in Chapter 6. [Pg.9]

An experimental complication is the difficulty in effecting molecular interaction between the components. The usual technique for preparing lipid-protein phases in an aqueous environment is to use components of opposite charge. This in turn means that the lipid should be added to the protein in order to obtain a homogeneous complex since a complex separates when a certain critical hydrophobicity is reached. If the precipitate is prepared in the opposite way, the composition of the complex can vary since initially the protein molecule can take up as many lipid molecules as its net charge, and this number can decrease successively with reduction in available lipid molecules. It is thus not possible to prepare lipid— protein—water mixtures, as in the case of other ternary systems, and to wait for equilibrium. Systems were prepared that consisted of lecithin-cardiolipin (L/CL) mixtures with (a) a hydrophobic protein, insulin, and with (b) a protein with high water solubility, bovine serum albumin (BSA). [Pg.57]


See other pages where Phase separation ternary system is mentioned: [Pg.67]    [Pg.275]    [Pg.125]    [Pg.2526]    [Pg.282]    [Pg.409]    [Pg.447]    [Pg.520]    [Pg.194]    [Pg.633]    [Pg.301]    [Pg.203]    [Pg.554]    [Pg.558]    [Pg.290]    [Pg.311]    [Pg.251]    [Pg.114]    [Pg.166]    [Pg.7]    [Pg.50]    [Pg.142]    [Pg.301]    [Pg.218]    [Pg.171]    [Pg.447]    [Pg.238]    [Pg.706]    [Pg.707]    [Pg.621]    [Pg.409]    [Pg.205]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Phase-separable system

Separable systems

Ternary phase

Ternary systems

Ternary systems, phase

© 2024 chempedia.info