Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Performance, warm

Impact of Fuel Sulfur on Three-Way Catalyst Performance (warmed-up conversion efficiency at conditions shown during exposure to sulfur at the concentrations shown). [Pg.34]

Storage Store R.T. stir before use becomes more vise, under cold conditions, but does not affect performance—warm to 40 C and stir to reverse... [Pg.40]

Two types of factors should be considered in selecting a detector detection capability (selectivity, sensitivity, response time, etc.) and performance (warm-up time, calibration requirements, portability, and power requirements) factors. These factors are discussed below. [Pg.104]

Cold extrusion increases friction and therefore processing energy/forces, but increases dimensional accuracy. May be performed warm. Viable for materials possessing adequate cold-working... [Pg.128]

Reduction of a nitro compound to a hydroxylamine. Dissolve 0-5 g. of the compound in 10 ml. of 50 per cent, alcohol, add 0-5 g. of solid ammonium chloride and about 0 5 g. of zinc powder. Heat to boiling and allow the ensuing chemical reaction to proceed for 5 minutes. Filter from the excess of zinc powder and test the filtrate with ToUen s reagent see Section III,70,(i). An immediate black or grey precipitate or a silver mirror indicates the presence of a hydroxylamine formed by the reduction of the nitro compound. Alternatively, warm the filtrate with Fehling s solution a hydroxylamine will precipitate red cuprous oxide. (A blank test should be performed with the original compound.)... [Pg.1076]

Properties. The ideal substitute should have identical or better performance properties than the CFG it replaces. The ideal CFG substitute must not harm the o2one layer, and must have a short atmospheric lifetime to ensure a low greenhouse warming potential (GWP). It also must be nontoxic, nonflammable, thermally and chemically stable under normal use conditions, and manufacturable at a reasonable pnce. The chemical industry has found substitutes that match many but not all of these cntena. [Pg.287]

It is generally felt that fuels which have values of DI below 570 when Tis in °C (1200 when Tis in °F) provide good warm-up driveabiUty performance. [Pg.183]

Essentially all of the methane [74-82-8] is removed ia the demethanizer overhead gas product. High recovery of ethane and heavier components as demethanizer bottoms products is commonplace. The work that is generated by expanding the gas ia the turboexpander is utilized to compress the residue gas from the demethanizer after it is warmed by heat exchange with the inlet gas. Recompression and deUvery to a natural gas pipeline is performed downstream of the plant. A propane recovery of 99% can be expected when ethane recoveries are ia excess of 65%. [Pg.183]

Pimento Berry Oil. The pimento or allspice tree, Pimenta dioca L. (syn. P. officinalis, Liadl.), a native of the West Indies and Central America, yields two essential oils of commercial importance pimento berry oil and pimenta leaf oil. The leaf oil finds some use ia perfumery for its resemblance to clove leaf and cinnamon leaf oils as a result of its high content of eugenol. Pimento berry oil is an item of commerce with extensive appHcation by the flavor industry ia food products such as meat sauces, sausages, and pickles, and moderate use ia perfumery, where it is used primarily as a modifier ia the modem spicy types of men s fragrances. The oil is steam-distilled from dried, cmshed, fully grown but unripe fmits. It is a pale yellow Hquid with a warm-spicy, sweet odor with a fresh, clean topnote, a tenacious, sweet-balsamic-spicy body, and a tea-like undertone. A comparative analysis of the headspace volatiles of ripe pimento berries and a commercial oil has been performed and differences are shown ia Table 52 (95). [Pg.337]

Convection heat transfer is dependent largely on the relative velocity between the warm gas and the drying surface. Interest in pulse combustion heat sources anticipates that high frequency reversals of gas flow direction relative to wet material in dispersed-particle dryers can maintain higher gas velocities around the particles for longer periods than possible ia simple cocurrent dryers. This technique is thus expected to enhance heat- and mass-transfer performance. This is apart from the concept that mechanical stresses iaduced ia material by rapid directional reversals of gas flow promote particle deagglomeration, dispersion, and Hquid stream breakup iato fine droplets. Commercial appHcations are needed to confirm the economic value of pulse combustion for drying. [Pg.242]

PSYCHROMETRY, EVAPORATIVE COOLING, AND SOLIDS DRYING TABLE 12-18 Warm-Air Direct-Heat Cocurrent Rotary Dryers Typical Performance Data ... [Pg.1204]

The warming up of the mat is performed by the so-called steam shock effect [173,219]. A prerequisite for this is the high permeability of the particle or fiber mat. Higher moisture contents of the face layers and spraying of water sustain this effect. [Pg.1090]

The issues in these evaluations are safety as related to toxicity and flammability, environmental impact as related to the generation of volatile organic compounds and global warming, product performance as related to insulating properties, conformity to fire codes, and the like, cost and availability, and regulatory requirements. [Pg.34]

Jets used in local ventilation have the same forms and performance as jets in general ventilation, described in Sections 7.4 and 7.7. These sections describe usable equations for flow, velocity, temperature, and concentration distributions. The buoyancy plumes that can result at the end of a jet or from a warm source are described in Section 7..5. [Pg.919]

But for power station applications, the thermal efficiency is not the only measure of the performance of a plant. While a new type of plant may involve some reduction in running costs due to improved thermal efficiency, it may also involve additional capital costs. The cost of electricity produced is the crucial criterion within the overall economics, and this depends not only on the thermal efficiency and capital costs, but also on the price of fuel, operational and maintenance costs, and the taxes imposed. Yet another factor, which has recently become important, is the production by gas turbine plants of greenhouse gases (mainly carbon dioxide) which contribute to global warming. Many countries are now considering the imposition of a special tax on the amount of CO2 produced by a power plant, and this may adversely affect the economics. So consideration of a new plant in future will involve not only the factors listed above but also the amount of CO2 produced per unit of electricity together with the extra taxes that may have to be paid. [Pg.131]

A detailed procedure for the use of MCPBA recently appeared in Reagents for Organic Synthesis by Fieser and Fieser. The commercially available MCPBA (Aldrich) is 85% pure the contaminant, m-chlorobenzoic acid, can be removed by washing with a phosphate buffer of pH 7.5. The epoxidation is usually performed as follows a solution of 3 -acetoxy-5a-androst-16-ene (2.06 g, 6.53 mmoles) in 25 ml of chloroform (or methylene dichloride) is chilled to 0° in a flask fitted with a condenser and drierite tube and treated with a solution of commercial MCPBA (1.74 g, 20% excess) in 25 ml chloroform precooled to the same temperature. The mixture is stirred and allowed to warm to room temperature. After 23 hr (or until TLC shows reaction is complete) the solution is diluted with 100 ml chloroform and washed in sequence with 100 ml of 10% sodium sulfite or sodium iodide followed by sodium thiosulfate, 200 ml of 1 M sodium bicarbonate and 200 ml water. The chloroform extract is dried (MgS04) and evaporated in vacuo to a volume of ca. 10 ml. Addition of methanol (10 ml) followed by cooling of the mixture to —10° yields 0.8 gof 16a,17a-epoxide mp 109.5-110°. Additional product can be obtained by concentration of the mother liquor (total yield 80-90%). [Pg.19]

Warm, J. S. (1984). (Ed.). Sustained Attention in Human Performance. New York Wiley. [Pg.376]

The determination of position of protonation by reaction with diazomethane was performed as follows The enamine was treated at —70° with ethereal hydrogen chloride and the suspension of precipitated salt was treated with diazomethane and allowed to warm slowly to —40°, at which temperature nitrogen was liberated. The reaction with lithium aluminum hydride (LAH) was carried out similarly except that an ether solution of LAH was added in place of diazomethane. The results from reaction of diazomethane and LAH 16) are summarized in Table 1. [Pg.172]

The metabolic rate can be measured in several ways. When no external work is being performed, the metabolic rate equals the heat output of the body. This heat output can be measured by a process called direct calorimetry. In this process, the subject IS placed m an insulated chamber that is surrounded by a water jacket. Water flows through the jacket at constant input temperature. The heat from the subject s body warms the air of the chamber and is then removed by the water flowing through the jacketing. By measuring the difference between the inflow and outflow water temperatures and the volume of the water heated, it is possible to calculate the subject s heat output, and thus the metabolic rate, in calories. [Pg.176]


See other pages where Performance, warm is mentioned: [Pg.210]    [Pg.210]    [Pg.187]    [Pg.133]    [Pg.189]    [Pg.14]    [Pg.225]    [Pg.182]    [Pg.331]    [Pg.338]    [Pg.339]    [Pg.186]    [Pg.332]    [Pg.308]    [Pg.310]    [Pg.493]    [Pg.1128]    [Pg.1135]    [Pg.1169]    [Pg.104]    [Pg.24]    [Pg.352]    [Pg.212]    [Pg.1082]    [Pg.97]    [Pg.284]    [Pg.300]    [Pg.340]    [Pg.1227]    [Pg.1228]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Warming

Warmness

© 2024 chempedia.info