Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivity cathodic kinetics

The following mechanisms in corrosion behavior have been affected by implantation and have been reviewed (119) (/) expansion of the passive range of potential, (2) enhancement of resistance to localized breakdown of passive film, (J) formation of amorphous surface alloy to eliminate grain boundaries and stabilize an amorphous passive film, (4) shift open circuit (corrosion) potential into passive range of potential, (5) reduce/eliminate attack at second-phase particles, and (6) inhibit cathodic kinetics. [Pg.398]

The increase in cathodic kinetics due to the action of biofilms on passive alloy surfaces can also increase the propagation rate of galvanic corrosion. Potentiodynamic polarization studies show that cathodic kinetics are increased during biofilm formation on passive alloy surfaces. Tests on crevice corrosion samples of passive alloys S30400 and S31600 revealed that crevice initiation times were reduced when natural marine biofilms were allowed to form on the exposed external cathode surface. (Dexter)5... [Pg.391]

These three passive systems are important in the technique of anodic protection (see Chapter 21). The kinetics of the cathodic partial reaction and therefore curves of type I, II or III depend on the material and the particular medium. Case III can be achieved by alloying additions of cathodically acting elements such as Pt, Pd, Ag, and Cu. In principle, this is a case of galvanic anodic protection by cathodic constituents of the microstructure [50]. [Pg.61]

Cyclic voltammetry (adsorption, monolayers) Potentiodynamic polarisation (passivation, activation) Cathodic reduction (thickness) Frequency response analysis (electrical properties, heterogeneity) Chronopotentiometry (kinetics)... [Pg.30]

The effects of concentration, velocity and temperature are complex and it will become evident that these factors can frequently outweigh the thermodynamic and kinetic considerations detailed in Section 1.4. Thus it has been demonstrated in Chapter 1 that an increase in hydrogen ion concentration will raise the redox potential of the aqueous solution with a consequent increase in rate. On the other hand, an increase in the rate of the cathodic process may cause a decrease in rate when the metal shows an active/passive transition. However, in complex environmental situations these considerations do not always apply, particularly when the metals are subjected to certain conditions of high velocity and temperature. [Pg.307]

Corrosion or mixed potentials (a) Active corrosion in acid solutions (b) Passive metal in acid solutions Potential dependent on the redox potential of the solution and the kinetics of the anodic and cathodic reactions. Potential dependent on the kinetics of the h.e.r. on the bare metal surface. Potential is that of an oxide-hlmed metal, and is dependent on the redox potential of the solution. Zn in HCI Stainless steel in oxygenated H2SO4... [Pg.1242]

In addition to the above thermodynamic consideration, kinetics also play an important role in determining the anodic stability of these salts. For example, some salts whose decomposition products are polymeric moieties were found to passivate the electrode surface effectively." Therefore, although the intrinsic oxidation potentials for these anions were not as high ( 4.0 V), they showed stability up to 4.50 V in subsequent scans. It should be cautioned here, though, as the passivation was only observed on an inert electrode surface, whether similar passivations would occur on an actual cathode surface... [Pg.146]

Fig. 2 distinguishes the domains of immunity, corrosion and passivity. At low pH corrosion is postulated due to an increased solubility of Cu oxides, whereas at high pH protective oxides should form due to their insolubility. These predictions are confirmed by the electrochemical investigations. The potentials of oxide formation as taken from potentiodynamic polarization curves [10] fit well to the predictions of the thermodynamic data if one takes the average value of the corresponding anodic and cathodic peaks, which show a certain hysteresis or irreversibility due to kinetic effects. There are also other metals that obey the predictions of potential-pH diagrams like e.g. Ag, Al, Zn. [Pg.277]

Fig. 4 shows a simple phase diagram for a metal (1) covered with a passivating oxide layer (2) contacting the electrolyte (3) with the reactions at the interfaces and the transfer processes across the film. This model is oversimplified. Most passive layers have a multilayer structure, but usually at least one of these partial layers has barrier character for the transfer of cations and anions. Three main reactions have to be distinguished. The corrosion in the passive state involves the transfer of cations from the metal to the oxide, across the oxide and to the electrolyte (reaction 1). It is a matter of a detailed kinetic investigation as to which part of this sequence of reactions is the rate-determining step. The transfer of O2 or OH- from the electrolyte to the film corresponds to film growth or film dissolution if it occurs in the opposite direction (reaction 2). These anions will combine with cations to new oxide at the metal/oxide and the oxide/electrolyte interface. Finally, one has to discuss electron transfer across the layer which is involved especially when cathodic redox processes have to occur to compensate the anodic metal dissolution and film formation (reaction 3). In addition, one has to discuss the formation of complexes of cations at the surface of the passive layer, which may increase their transfer into the electrolyte and thus the corrosion current density (reaction 4). The scheme of Fig. 4 explains the interaction of the partial electrode processes that are linked to each other by the elec-... [Pg.279]

Electrochemical protection can be achieved by forming an electrolytic cell in which the anode material is more easily corroded than the metal it is desired to protect. This is the case of zinc in contact with iron (Fig. 16.11) in this example there is a sort of cathodic protection. Protection of ship hulls, of subterranean pipeline tubings, of oil rigs, etc. is often done using sacrificial anodes that are substituted as necessary. The requisites for a good sacrificial anode are, besides its preferential corrosion, slow corrosion kinetics and non-passivation. Sacrificial anodes in use are, for this reason, normally of zinc, magnesium, or aluminium... [Pg.364]

The cathodic reaction kinetics thus play an important role in determining the corrosion state for an active-passive material. The introduction of additional cathodic reactions to an environment or the change in the kinetics of one already present can dramatically affect the state of the material s surface. Figure 11 shows... [Pg.64]

Corrosion control using external polarization usually operates by reducing the driving force for the metal dissolution reaction, as in cathodic protection. For passivating metals, an alternative is to reduce the kinetics of the dissolution process by raising the potential. This is known as anodic protection and has been... [Pg.69]

Figure 24 Schematic Evans diagram and polarization curve illustrating the origin of the negative hysteresis observed upon cyclic polarization for materials that do not pit. Line a represents the (unchanging) cathodic Evans line. Line b represents the anodic Evans line during the anodically directed polarization, while line c represents the anodic Evans line for the material after its passive film has thickened because of the anodic polarization. The higher corrosion potential observed for the return scan (E (back)) is due to the slowing of the anodic dissolution kinetics. Figure 24 Schematic Evans diagram and polarization curve illustrating the origin of the negative hysteresis observed upon cyclic polarization for materials that do not pit. Line a represents the (unchanging) cathodic Evans line. Line b represents the anodic Evans line during the anodically directed polarization, while line c represents the anodic Evans line for the material after its passive film has thickened because of the anodic polarization. The higher corrosion potential observed for the return scan (E (back)) is due to the slowing of the anodic dissolution kinetics.
Corrosion inhibitor - corrosion inhibitors are chemicals which are added to the electrolyte or a gas phase (gas phase inhibitors) which slow down the - kinetics of the corrosion process. Both partial reactions of the corrosion process may be inhibited, the anodic metal dissolution and/or the cathodic reduction of a redox-system [i]. In many cases organic chemicals or compounds after their reaction in solution are adsorbed at the metal surface and block the reactive centers. They may also form layers with metal cations, thus growing a protective film at the surface like anodic oxide films in case of passivity. Benzo-triazole is an example for the inhibition of copper cor-... [Pg.117]

Under -> open-circuit conditions a possible passivation depends seriously on the environment, i.e., the pH of the solution and the potential of the redox system which is present within the electrolyte and its kinetics. For electrochemical studies redox systems are replaced by a -> potentiostat. Thus one may study the passivating properties of the metal independently of the thermodynamic or kinetic properties of the redox system. However, if a metal is passivated in a solution at open-circuit conditions the cathodic current density of the redox system has to exceed the maximum anodic dissolution current density of the metal to shift the electrode potential into the passive range (Fig. 1 of the next entry (- passivation potential)). In the case of iron, concentrated nitric acid will passivate the metal surface whereas diluted nitric acid does not passivate. However, diluted nitric acid may sustain passivity if the metal has been passivated before by other means. Thus redox systems may induce or only maintain passivity depending on their electrode potential and the kinetics of their reduction. In consequence, it depends on the characteristics of metal disso-... [Pg.483]


See other pages where Passivity cathodic kinetics is mentioned: [Pg.636]    [Pg.281]    [Pg.300]    [Pg.1971]    [Pg.86]    [Pg.313]    [Pg.213]    [Pg.40]    [Pg.59]    [Pg.121]    [Pg.132]    [Pg.167]    [Pg.183]    [Pg.1316]    [Pg.65]    [Pg.87]    [Pg.568]    [Pg.137]    [Pg.286]    [Pg.205]    [Pg.62]    [Pg.65]    [Pg.581]    [Pg.117]    [Pg.118]    [Pg.478]    [Pg.611]    [Pg.70]    [Pg.73]    [Pg.324]    [Pg.326]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Cathode kinetics

Cathodic passivation

© 2024 chempedia.info