Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide films anodic

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

Sheet aluminium can be given a colour by a similar process. The aluminium is first made the anode in a bath of chromic acid (p. 377) when, instead of oxygen being evolved, the aluminium becomes coated with a very adherent film of aluminium oxide which is very adsorbent. If a dye is added to the bath the oxide film is coloured, this colour being incorporated in a film which also makes the remaining aluminium resistant to corrosion. This process is called anodising aluminium. [Pg.151]

Films, anodic oxide Films, passivating Films, plastic Film theory Film wrappers Filter Filter aid Filter aids Filter fabrics Filtering centrifuges Filter media Filters... [Pg.402]

This is essentially a corrosion reaction involving anodic metal dissolution where the conjugate reaction is the hydrogen (qv) evolution process. Hence, the rate depends on temperature, concentration of acid, inhibiting agents, nature of the surface oxide film, etc. Unless the metal chloride is insoluble in aqueous solution eg, Ag or Hg ", the reaction products are removed from the metal or alloy surface by dissolution. The extent of removal is controUed by the local hydrodynamic conditions. [Pg.444]

Niobium is used as a substrate for platinum in impressed-current cathodic protection anodes because of its high anodic breakdown potential (100 V in seawater), good mechanical properties, good electrical conductivity, and the formation of an adherent passive oxide film when it is anodized. Other uses for niobium metal are in vacuum tubes, high pressure sodium vapor lamps, and in the manufacture of catalysts. [Pg.26]

Atmospheric corrosion is electrochemical ia nature and depends on the flow of current between anodic and cathodic areas. The resulting attack is generally localized to particular features of the metallurgical stmcture. Features that contribute to differences ia potential iaclude the iatermetaUic particles and the electrode potentials of the matrix. The electrode potentials of some soHd solutions and iatermetaUic particles are shown ia Table 26. Iron and sUicon impurities ia commercially pure aluminum form iatermetaUic coastitueat particles that are cathodic to alumiaum. Because the oxide film over these coastitueats may be weak, they can promote electrochemical attack of the surrounding aluminum matrix. The superior resistance to corrosion of high purity aluminum is attributed to the small number of these constituents. [Pg.125]

Anodic Oxidation. The abiUty of tantalum to support a stable, insulating anodic oxide film accounts for the majority of tantalum powder usage (see Thin films). The film is produced or formed by making the metal, usually as a sintered porous pellet, the anode in an electrochemical cell. The electrolyte is most often a dilute aqueous solution of phosphoric acid, although high voltage appHcations often require substitution of some of the water with more aprotic solvents like ethylene glycol or Carbowax (49). The electrolyte temperature is between 60 and 90°C. [Pg.331]

Many studies (50—56) have attempted to explain bulk conduction through anodic oxide films on tantalum foils or sputtered tantalum substrates. [Pg.331]

Flaws in the anodic oxide film are usually the primary source of electronic conduction. These flaws are either stmctural or chemical in nature. The stmctural flaws include thermal crystalline oxide, nitrides, carbides, inclusion of foreign phases, and oxide recrystaUi2ed by an appHed electric field. The roughness of the tantalum surface affects the electronic conduction and should be classified as a stmctural flaw (58) the correlation between electronic conduction and roughness, however, was not observed (59). Chemical impurities arise from metals alloyed with the tantalum, inclusions in the oxide of material from the formation electrolyte, and impurities on the surface of the tantalum substrate that are incorporated in the oxide during formation. [Pg.331]

Fig. 7. Anodic oxide films on tantalum before ( ) and after ( ... Fig. 7. Anodic oxide films on tantalum before ( ) and after ( ...
Fig. 8. Model of the conductivity profile in an anodic oxide film on tantalum after heat treatment, where Tj < r, < T,. Fig. 8. Model of the conductivity profile in an anodic oxide film on tantalum after heat treatment, where Tj < r, < T,.
Crevice Corrosion. Crevice corrosion is intense locali2ed corrosion that occurs within a crevice or any area that is shielded from the bulk environment. Solutions within a crevice are similar to solutions within a pit in that they are highly concentrated and acidic. Because the mechanisms of corrosion in the two processes are virtually identical, conditions that promote pitting also promote crevice corrosion. Alloys that depend on oxide films for protection (eg, stainless steel and aluminum) are highly susceptible to crevice attack because the films are destroyed by high chloride ion concentrations and low pH. This is also tme of protective films induced by anodic inhibitors. [Pg.267]

Passivating (anodic) inhibitors form a protective oxide film on the metal surface they are the best inhibitors because they can be used in economical concentrations and their protective films are tenacious and tend to be rapidly repaired if damaged. [Pg.269]

Under cyclic or repeated stress conditions, rupture of protective oxide films that prevent corrosion takes place at a greater rate than that at which new protec tive films can be formed. Such a situation frequently resiilts in formation of anodic areas at the points of rupture these produce pits that serve as stress-concentration points for the origin or cracks that cause ultimate failure. [Pg.2419]

There are two types of impressed current anodes either they consist of anodically stable noble metals (e.g., platinum) or anodically passivatable materials that form conducting oxide films on their surfaces. In both cases, the anodic redox reaction occurs at much lower potentials than those of theoretically possible anodic corrosion. [Pg.207]

Impressed current anodes of the previously described substrate materials always have a much higher consumption rate, even at moderately low anode current densities. If long life at high anode current densities is to be achieved, one must resort to anodes whose surfaces consist of anodically stable noble metals, mostly platinum, more seldom iridium or metal oxide films (see Table 7-3). [Pg.213]

The protection current requirement for aluminum ships is considerably less because of the dense adherent oxide films. The necessary protection current requirement is being clarified in current investigations [24] but good results have been obtained by assuming a figure of 10% of that for steel. With aluminum there is only a very narrow permissible potential range [25] (see Section 2.4) so that impressed current protection cannot be used because of the anodic voltage cone and only selected anode materials can be considered. [Pg.399]

Compared with XPS and AES, the higher surface specificity of SSIMS (1-2 mono-layers compared with 2-8 monolayers) can be useful for more precise determination of the chemistry of an outer surface. Although from details of the 01s spectrum, XPS could give the information that OH and oxide were present on a surface, and from the Cls spectrum that hydrocarbons and carbides were present, only SSIMS could be used to identify the particular hydroxide or hydrocarbons. In the growth of oxide films for different purposes (e.g. passivation or anodization), such information is valuable, because it provides a guide to the quality of the film and the nature of the growth process. [Pg.96]

He concluded that for aluminium and titanium certain etching or anodization pretreatment processes produce oxide films on the metal surfaces, which because of their porosity and microscopic roughness, mechanically interlock with the polymer forming much stronger bonds than if the surface were smooth . [Pg.335]

Anodizing—the formation of a hard, corrosion-resistant oxide film on metals via anodic oxidation of the metal in an electrolytic solution. [Pg.46]

Clean metallic aluminum is extremely reactive. Even exposure to air at ordinary temperatures is sufficient to promote immediate oxidation. This reactivity is self-inhibiting, however, which determines the general corrosion behavior of aluminum and its alloys due to the formation of a thin, inert, adherent oxide film. In view of the great importance of the surface film, it can be thickened by anodizing in a bath of 15% sulfuric acid (H2SO4) solution or by cladding with a thin layer of an aluminum alloy containing 1 % zinc. [Pg.90]

The corrosion resistance of unalloyed titanium in hydrochloric or sulfuric acids can be increased significantly by anodic protection, which maintains the oxide film so that the corrosion will be negligible even in severely reducing conditions. [Pg.96]


See other pages where Oxide films anodic is mentioned: [Pg.339]    [Pg.300]    [Pg.339]    [Pg.300]    [Pg.2723]    [Pg.2725]    [Pg.2726]    [Pg.242]    [Pg.308]    [Pg.309]    [Pg.224]    [Pg.163]    [Pg.126]    [Pg.126]    [Pg.44]    [Pg.200]    [Pg.330]    [Pg.331]    [Pg.331]    [Pg.331]    [Pg.331]    [Pg.332]    [Pg.283]    [Pg.146]    [Pg.425]    [Pg.233]    [Pg.215]    [Pg.96]    [Pg.55]    [Pg.5]   
See also in sourсe #XX -- [ Pg.28 , Pg.91 ]

See also in sourсe #XX -- [ Pg.28 , Pg.91 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic films

Anodic oxidation

Anodic oxides

Oxidation films

© 2024 chempedia.info