Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Current density dissolution

From polarization curves the protectiveness of a passive film in a certain environment can be estimated from the passive current density in figure C2.8.4 which reflects the layer s resistance to ion transport tlirough the film, and chemical dissolution of the film. It is clear that a variety of factors can influence ion transport tlirough the film, such as the film s chemical composition, stmcture, number of grain boundaries and the extent of flaws and pores. The protectiveness and stability of passive films has, for instance, been based on percolation arguments [67, 681, stmctural arguments [69], ion/defect mobility [56, 57] and charge distribution [70, 71]. [Pg.2725]

In all cases of localized corrosion, tlie ratio of the catliodic to tlie anodic area plays a major role in tlie localized dissolution rate. A large catliodic area provides high catliodic currents and, due to electroneutrality requirements, tlie small anodic area must provide a high anodic current. Hence, tlie local current density, i.e., local corrosion rate, becomes higher witli a larger catliode/anode-ratio. [Pg.2728]

Certainly a thermodynamically stable oxide layer is more likely to generate passivity. However, the existence of the metastable passive state implies that an oxide him may (and in many cases does) still form in solutions in which the oxides are very soluble. This occurs for example, on nickel, aluminium and stainless steel, although the passive corrosion rate in some systems can be quite high. What is required for passivity is the rapid formation of the oxide him and its slow dissolution, or at least the slow dissolution of metal ions through the him. The potential must, of course be high enough for oxide formation to be thermodynamically possible. With these criteria, it is easily understood that a low passive current density requires a low conductivity of ions (but not necessarily of electrons) within the oxide. [Pg.135]

In de-aerated 10sulphuric acid (Fig. 3.45) the active dissolution of the austenitic irons occurs at more noble potentials than that of the ferritic irons due to the ennobling effect of nickel in the matrix. This indicates that the austenitic irons should show lower rates of attack when corroding in the active state such as in dilute mineral acids. The current density maximum in the active region, i.e. the critical current density (/ ii) for the austenitic irons tends to decrease with increasing chromium and silicon content. Also the current densities in the passive region are lower for the austenitic irons... [Pg.601]

Similar curves determined in 50 Vo sodium hydroxide solution at 60°C show (Fig. 3.46) that the austenitic irons exhibit more noble active dissolution and also lower current densities in the active and passive regions than the ferritic irons the current densities in both regions decrease markedly with increasing nickel content (Fig. 3.47). [Pg.603]

The anodic dissolution of nickel is also dependent on the amount of cold work in the metal and in the active region the anodic current density of cold worked material at a given potential is up to one order of magnitude greater than that of annealed material. [Pg.767]

If the applied current density is reduced when a tin anode has been made passive in alkaline solution with the formation of a brown him and evolution of oxygen, the surface him changes to one of yellow colour and dissolution of tin as stannite ions proceeds freely . This effect is exploited in the electrodeposition of tin from sodium or potassium stannate solutions. [Pg.807]

Turning now to the acidic situation, a report on the electrochemical behaviour of platinum exposed to 0-1m sodium bicarbonate containing oxygen up to 3970 kPa and at temperatures of 162 and 238°C is available. Anodic and cathodic polarisation curves and Tafel slopes are presented whilst limiting current densities, exchange current densities and reversible electrode potentials are tabulated. In weak acid and neutral solutions containing chloride ions, the passivity of platinum is always associated with the presence of adsorbed oxygen or oxide layer on the surface In concentrated hydrochloric acid solutions, the possible retardation of dissolution is more likely because of an adsorbed layer of atomic chlorine ... [Pg.945]

Attack on the substrate by contact with Mg(OH>2 and Ca(OH)2 (calcareous scale) can also cause deplatinisation to occur. Anodes located close to the cathode or operating at high current densities can lead to a rapid build up of calcareous deposit, the major constituents of which are Mg(OH)2 and Ca(OH>2. The alkaline conditions so generated can lead to rapid dissolution of the platinum. The calcareous deposit can be removed by washing with dilute nitric acid. [Pg.168]

The approximate value for the oxide coating dissolution rate in relation to current density in soils and fresh water is ... [Pg.173]

Fig. 3. Evans-diagram for the cementation of Cu2+ and Pb2 with zinc amalgam of different zinc content. If the zinc concentration in the mercury employed for this special extraction technique is low, the anodic zinc-dissolution current density may be diffusion controlled and below the limiting cathodic current density for the copper reduction. The resulting mixed potential will lie near the halfwave potential for the reaction Cu2+ + 2e j Cu°(Hg) and only Cu2 ions are cemented into the mercury. Fig. 3. Evans-diagram for the cementation of Cu2+ and Pb2 with zinc amalgam of different zinc content. If the zinc concentration in the mercury employed for this special extraction technique is low, the anodic zinc-dissolution current density may be diffusion controlled and below the limiting cathodic current density for the copper reduction. The resulting mixed potential will lie near the halfwave potential for the reaction Cu2+ + 2e j Cu°(Hg) and only Cu2 ions are cemented into the mercury.
Little work has been done on bare lithium metal that is well defined and free of surface film [15-24], Odziemkowski and Irish [15] showed that for carefully purified LiAsF6 tetrahydrofuran (THF) and 2-methyltetrahydrofuran 2Me-THF electrolytes the exchange-current density and corrosion potential on the lithium surface immediately after cutting in situ, are primarily determined by two reactions anodic dissolution of lithium, and cathodic reduc-... [Pg.422]

Figure 20. Pit-dissolution current density pit radius and ion concentration buildup AC in the pit electrolyte corresponding to the critical condition for growing pits on 18Cr-8Ni stainless steel to passivate at different repassivation potentials, EK, in 0.5 kmol m 3 H2S04 + 0.5 kmol m-3 NaCl during cathodic potential sweep at different sweep rates.7 (From N. Sato, J. Electrochem. Soc. 129,261,1982, Fig. 1. Reproduced by permission of The Electrochemical Society, Inc.)... Figure 20. Pit-dissolution current density pit radius and ion concentration buildup AC in the pit electrolyte corresponding to the critical condition for growing pits on 18Cr-8Ni stainless steel to passivate at different repassivation potentials, EK, in 0.5 kmol m 3 H2S04 + 0.5 kmol m-3 NaCl during cathodic potential sweep at different sweep rates.7 (From N. Sato, J. Electrochem. Soc. 129,261,1982, Fig. 1. Reproduced by permission of The Electrochemical Society, Inc.)...
Inside a pit in electrolytic solution, anodic dissolution (the critical dissolution current density, and diffusion of dissolved metal hydrates to the bulk solution outside the pit take place simultaneously, so that the mass transfer is kept in a steady state. According to the theory of mass transport at an electrode surface for anodic dissolution of a metal electrode,32 the total increase of the hydrates inside a pit, AC(0) = AZC,<0),is given by the following equation33,34 ... [Pg.246]


See other pages where Current density dissolution is mentioned: [Pg.43]    [Pg.43]    [Pg.306]    [Pg.307]    [Pg.277]    [Pg.50]    [Pg.146]    [Pg.154]    [Pg.158]    [Pg.82]    [Pg.119]    [Pg.137]    [Pg.309]    [Pg.312]    [Pg.312]    [Pg.766]    [Pg.767]    [Pg.938]    [Pg.1149]    [Pg.1159]    [Pg.1161]    [Pg.1165]    [Pg.1187]    [Pg.1191]    [Pg.1205]    [Pg.1272]    [Pg.164]    [Pg.171]    [Pg.179]    [Pg.180]    [Pg.338]    [Pg.348]    [Pg.525]    [Pg.1015]    [Pg.1250]    [Pg.229]    [Pg.245]    [Pg.246]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



© 2024 chempedia.info