Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivation cleaning

Storage, passive (cleaning) Storage in an environment that has been cleaned but is not being cleaned while the substrate is in the storage environment. Example Cleaned glass container. See also Storage, active. [Pg.706]

Equipment should be carefiiUy and completely degreased and passivated with low concentrations of fluorine or the gaseous halogen fluoride before use. Special care should be taken that valves are completely disassembled and each part carefiiUy cleaned. [Pg.187]

Monel and nickel are the preferred materials of constmction for cylinders and deHvery systems however, copper, brass, steel, and stainless steel can be used at room temperature, providing that these metals are cleaned, dried, and passivated with a fluoride film prior to use. Studies have shown that fluorine passivation of stainless steel and subsequent formation of an iron fluoride layer prior to WF exposure prevents reaction between the WF and the stainless steel surface (23). [Pg.258]

Metal Cleaning. About 204 thousand metric tons of HCl (100% basis) was consumed in 1993 for steel pickling, wherein the hydrochloric acid readily dissolves all of the various oxides present in the scale formed during the hot rolling process. Using suitable inhibitors such as alkyl pyridines, HCl reacts very slowly with the base metal rendering the surface so clean that it must be passivated with a mild alkaline rinse. [Pg.451]

The decomposition of aqueous hydrogen peroxide is minimized by various purification steps during manufacture, use of clean passive equipment, control of contaminants, and the addition of stabilizers. The decomposition is zero-order with respect to hydrogen peroxide concentration. [Pg.472]

Stainless steel develops a passive protective layer (<5-nm thick) of chromium oxide [1118-57-3] which must be maintained or permitted to rebuild after it is removed by product flow or cleaning. The passive layer may be removed by electric current flow across the surface as a result of dissinulat metals being in contact. The creation of an electrolytic cell with subsequent current flow and corrosion has to be avoided in constmction. Corrosion may occur in welds, between dissimilar materials, at points under stress, and in places where the passive layer is removed it may be caused by food material, residues, cleaning solutions, and bmshes on material surfaces (see CORROSION AND CORROSION CONTROL). [Pg.361]

Zirconium is a highly active metal which, like aluminum, seems quite passive because of its stable, cohesive, protective oxide film which is always present in air or water. Massive zirconium does not bum in air, but oxidizes rapidly above 600°C in air. Clean zirconium plate ignites spontaneously in oxygen of ca 2 MPa (300 psi) the autoignition pressure drops as the metal thickness decreases. Zirconium powder ignites quite easily. Powder (<44 fim or—325 mesh) prepared in an inert atmosphere by the hydride—dehydride process ignites spontaneously upon contact with air unless its surface has been conditioned, ie, preoxidized by slow addition of air to the inert atmosphere. Heated zirconium is readily oxidized by carbon dioxide, sulfur dioxide, or water vapor. [Pg.427]

Metal Cleaning. Citric acid, partially neutralized to - pH 3.5 with ammonia or triethanolamine, is used to clean metal oxides from the water side of steam boilers and nuclear reactors with a two-step single fill operation (104—122). The resulting surface is clean and passivated. This process has a low corrosion rate and is used for both pre-operational mill scale removal and operational cleaning to restore heat-transfer efficiency. [Pg.185]

In contrast to external protection, the anodes in internal protection are usually more heavily covered with corrosion products and oil residues because the electrolyte is stagnant and contaminated. The impression can be given that the anodes are no longer functional. Usually the surface films are porous and spongy and can be removed easily. This is achieved by spraying during tank cleaning. In their unaltered state they have in practice little effect on the current output in ballast seawater. In water low in salt, the anodes can passivate and are then inactive. [Pg.412]

Check continuity zero and adjust Calibrate as required Chemical Cleaning Activation Passivation Rinse... [Pg.331]

Clean-out of the lubrication system, including chemical cleaning and passivation, where required. [Pg.333]

Selection of materials of construction compatible with the chemical(s) in use, properly cleaned and passivated... [Pg.55]

Piping systems should be designed for an economic flow velocity. For relatively clean fluids, a recommended velocity range where minimum corrosion can be expected is 2 to 10 fps. If piping bores exist, maximum fluid velocities may have a mean velocity of 3 fps for a 3/8-in. bore to 10 fps for an 8-in.-diameter bore. Higher flow velocities are not uncommon in situations that require uniform, constant oxygen supply to form protective films on active/passive metals. [Pg.44]

The first use of new plant, or start-up after a shutdown, poses corrosion hazards additional to those encountered in normal operation. New plant such as boilers requires special water treatment, involving boil-out, passivation and possible chemical cleaning. Actual requirements depend on the boiler type, the proposed service, the quality of water available during commissioning and the internal condition of the boiler. The condition of the boiler depends on for how long and in what conditions it has been stored. The presence of any salts, dirt or rust is harmful. An adherent, protective layer of magnetite in normal operation... [Pg.901]

A small amount of nickel in the FCC feed has a significant influence on the unit operation. In a clean gas oil operation, the hydrogen yield is about 40 standard cubic feet (scf) per barrel of feed (0.07 wi /r ). This is a manageable rate that most units can handle. If the nickel level increases to 1.5 ppm, the hydrogen yield increases up to 100 scf per barrel (0.17 wt%). Note that in a 50,000 barrel/day unit, this corresponds to a mere 16 pounds per day of nickel. Unless the catalyst addition rate is increased or the nickel in the feed is passivated (see Chapter 3), the feed rate or conversion may need to be reduced. The wet gas will become lean and may limit the pumping capacity of the wet gas compressor. [Pg.64]

The very new techniques of scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) have yet to establish themselves in the field of corrosion science. These techniques are capable of revealing surface structure to atomic resolution, and are totally undamaging to the surface. They can be used in principle in any environment in situ, even under polarization within an electrolyte. Their application to date has been chiefly to clean metal surfaces and surfaces carrying single monolayers of adsorbed material, rendering examination of the adsorption of inhibitors possible. They will indubitably find use in passive film analysis. [Pg.34]

The cleanliness of the surface produced by emulsifiable cleaners is rarely of a very high standard, and additional cleaning may well be necessary before further finishing operations. Success has been achieved, however, in the use of these products prior to some immersion phosphating operations, where the crystal growth can be quite refined due to the absence of the passivation effect often encountered with some heavy-duty alkali cleaners. The supplier of the phosphating solution should be asked to advise on the suitability of any particular cleaning/pretreatment combination. [Pg.281]

With materials like the stainless steels, which may be either active or passive in a test environment, it is common practice to produce a particular initial level of passivity or activity by some special chemical treatment prior to exposure. With stainless steels this objective may be subsidiary to eliminating surface contamination, such as iron from processing tools, by treatment in a nitric acid solution which might also be expected to achieve substantial passivity incidental to the cleaning action (ASTM A380 1988). [Pg.980]


See other pages where Passivation cleaning is mentioned: [Pg.13]    [Pg.540]    [Pg.541]    [Pg.13]    [Pg.540]    [Pg.541]    [Pg.841]    [Pg.1712]    [Pg.265]    [Pg.241]    [Pg.175]    [Pg.132]    [Pg.226]    [Pg.361]    [Pg.432]    [Pg.358]    [Pg.358]    [Pg.358]    [Pg.149]    [Pg.2431]    [Pg.392]    [Pg.96]    [Pg.31]    [Pg.434]    [Pg.92]    [Pg.901]    [Pg.730]    [Pg.337]    [Pg.338]    [Pg.363]    [Pg.502]    [Pg.623]    [Pg.629]    [Pg.854]    [Pg.855]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Cleaning passive

© 2024 chempedia.info