Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particles liquid state

Stillinger F 1973 Structure in aqueous solutions from the standpoint of scaled particle theory J. Solution Chem. 2 141 Widom B 1967 Intermolecular forces and the nature of the liquid state Sc/e/ ce 375 157 Longuet-Higgins H C and Widom B 1964 A rigid sphere model for the melting of argon Mol. Phys. 8 549... [Pg.557]

In the theory of the liquid state, the hard-sphere model plays an important role. For hard spheres, the pair interaction potential V r) = qo for r < J, where d is the particle diameter, whereas V(r) = 0 for r s d. The stmcture of a simple fluid, such as argon, is very similar to that of a hard-sphere fluid. Hard-sphere atoms do, of course, not exist. Certain model colloids, however, come very close to hard-sphere behaviour. These systems have been studied in much detail and some results will be quoted below. [Pg.2668]

Further support for this approach is provided by modern computer studies of molecular dynamics, which show that much smaller translations than the average inter-nuclear distance play an important role in liquid state atom movement. These observations have conhrmed Swalin s approach to liquid state diffusion as being very similar to the calculation of the Brownian motion of suspended particles in a liquid. The classical analysis for this phenomenon was based on the assumption that the resistance to movement of suspended particles in a liquid could be calculated by using the viscosity as the frictional force in the Stokes equation... [Pg.293]

If a fuel is in the liquid state, such as fuel oil, most of it must be vaporized to the gaseous state before combustion occurs. This vaporization can be accomplished by supplying heat from an outside source, but usually the liquid fuel is first atomized and then the finely divided fuel particles are sprayed into a hot combustion chamber to accomplish the gasification. [Pg.80]

Air contaminants in solid or liquid state (aerosols), e.g., wood dust, welding smoke, or oil mist, are all in principle directly visible. The dispersion of those contaminants and the airflow patterns around the source may therefore be studied without any special tools. It is, however, not always possible to see the contaminant if, for example, the concentration in the air is low, the size of the particles is small, or the lighting is poor. The fact that the contaminant can t be seen may stem from the acceptable low level of the concentration but that can of course not be used to conclude that the control is acceptable. That conclusion depends not only on the contaminant s toxicological qualities but on how visible it is iit air. The ability to see the particles directly is also, as said above, a function of their size. Small particles, able to be transported deep into the thinner airways of the lungs, are many times also difficult to see directly. [Pg.1110]

Aerosols are solid or liquid particles, suspended in the liquid state, that have stability to gravitational separation over a period of observation. Slow coagulation by Brownian motion is implied. [Pg.152]

A final important class of composite materials is the composite hquids. Composite liquids are highly stmctured fluids based either on particles or droplets in suspension, surfactants, liquid ciystalhne phases, or other macromolecules. A number of composite liquids are essential to the needs of modem industiy and society because they exhibit properties important to special end uses. Examples include lubricants, hydraulic traction fluids, cutting fluids, and oil-drilling muds. Paints, coatings, and adhesives may also be composite liquids. Indeed, composite hquids are valuable in any case where a well-designed liquid state is absolutely essential for proper delivery and action. [Pg.82]

We have seen that particle sizes of 100-150 y in classical LC lead to slow and inefficient columns. The reason for this is related to the slow diffusion of molecules in the liquid state (e.g., gaseous diffusion coefficient 10 liquid diffusion coefficients). [Pg.229]

The activities of the various components 1,2,3. .. of an ideal solution are, according to the definition of an ideal solution, equal to their mole fractions Ni, N2,. . . . The activity, for present purposes, may be taken as the ratio of the partial pressure Pi of the constituent in the solution to the vapor pressure P of the pure constituent i in the liquid state at the same temperature. Although few solutions conform even approximately to ideal behavior at all concentrations, it may be shown that the activity of the solvent must converge to its mole fraction Ni as the concentration of the solute(s) is made sufficiently small. According to the most elementary considerations, at sufficiently high dilutions the activity 2 of the solute must become proportional to its mole fraction, provided merely that it does not dissociate in solution. In other words, the escaping tendency of the solute must be proportional to the number of solute particles present in the solution, if the solution is sufficiently dilute. This assertion is equally plausible for monomeric and polymeric solutes, although the... [Pg.269]

So far, the majority of granular matter studies by NMR/MRI have used liquid state proton measurements in solid materials. Because proton signals are relatively insensitive to chemical environment through the chemical shift effect and because the physical environments are relatively similar in all liquids, the resonance frequency and the NMR linewidth are not good indicators of granular parameters such as particle density and velocity. [Pg.500]

Several kinds of intermediate states exist between the state of highest order in a crystal having translational symmetry in three dimensions and the disordered distribution of particles in a liquid. Liquid crystals are closest to the liquid state. They behave macroscopically like liquids, their molecules are in constant motion, but to a certain degree there exists a crystal-like order. [Pg.27]

This paper reviews the experiences of the oil industry in regard to asphaltene flocculation and presents justifications and a descriptive account for the development of two different models for this phenomenon. In one of the models we consider the asphaltenes to be dissolved in the oil in a true liquid state and dwell upon statistical thermodynamic techniques of multicomponent mixtures to predict their phase behavior. In the other model we consider asphaltenes to exist in oil in a colloidal state, as minute suspended particles, and utilize colloidal science techniques to predict their phase behavior. Experimental work over the last 40 years suggests that asphaltenes possess a wide molecular weight distribution and they may exist in both colloidal and dissolved states in the crude oil. [Pg.444]

Microporous nanoparticles with ordered zeolitic structure such as Ti-Beta are used for incorporation into walls or deposition into pores of mesoporous materials to form the micro/mesoporous composite materials [1-3], Microporous particles need to be small enough to be successfully incorporated in the composite structure. This means that the zeolite synthesis has to be stopped as soon as the particles exhibit ordered zeolitic structure. To study the growth of Ti-Beta particles we used 29Si solid-state and liquid-state NMR spectroscopy combined with x-ray powder diffraction (XRPD) and high-resolution transmission electron microscopy (HRTEM). With these techniques we monitored zeolite formation from the initial precursor gel to the final Ti-Beta product. [Pg.65]

A quantity of central importance in the study of uniform liquids is the pair correlation function, g r), which is the probability (relative to an ideal gas) of finding a particle at position r given that there is a particle at the origin. All other structural and thermodynamic properties can be obtained from a knowledge of g r). The calculation of g r) for various fluids is one of the long-standing problems in liquid state theory, and several accurate approaches exist. These theories can also be used to obtain the density profile of a fluid at a surface. [Pg.109]

When estimating air-aerosol partitioning of gas phase substances such as PAHs, most of which are solids, it is usual to use the liquid state vapor pressure as the correlating parameter. This is because the PAH is effectively in a liquidlike state on or in the aerosol particle. It does not exist in crystalline form. [Pg.9]

In the solid and liquid phases, molecules are very close to each other. This is because forces hold the molecules together in the solid and liquid states. We have already studied intramolecular bonds within molecules in the previous chapter. In this chapter, we will examine the forces of attraction between the particles in liquids and solids. [Pg.50]

Type of Crystalline Solid Particles Involved Primary Forces of Attraction Between Particles Boiling Point Electrical Conductivity in Liquid State Other Physical Properties of Crystals Conditions Necessary for Formation Examples... [Pg.201]

We present here a simple model where long-range and nonadditivity of the correlations can be studied explicitly in terms of the ligand-ligand, and ligand-site interactions. With this model we can clearly see the different behavior of the three models discussed in previous sections and, by generalization, we shall see that the same mechanism applies for correlations between particles in the liquid state. [Pg.159]

The second category of methods uses a more general approach, based on fundamental concepts in statistical mechanics of the liquid state. As mentioned above, the Hwang and Freed theory (138) and the work of Ayant et al. (139) allow for the presence of intermolecular forces by including in the formulation the radial distribution function, g(r), of the nuclear spins with respect to the electron spins. The radial distribution function is related to the effective interaction potential, V(r), or the potential of mean force, W(r), between the spin-carrying particles through the relation (138,139) ... [Pg.93]

The monodisperse fragmentation process can be extended to produce monodis-perse solid particles [156], The general strategy consists of performing the emulsification in conditions such that the dispersed phase is in the liquid state, and to solidify the drops either by a temperature quench or through polymerization. The microscopic image in Fig. 1.29 illustrates this possibility. It corresponds to solid paraffin oil dispersed in water at room temperature. The emulsification was performed in the liquid state, at a temperature above the melting point of the... [Pg.36]


See other pages where Particles liquid state is mentioned: [Pg.637]    [Pg.156]    [Pg.754]    [Pg.197]    [Pg.74]    [Pg.98]    [Pg.603]    [Pg.260]    [Pg.452]    [Pg.365]    [Pg.47]    [Pg.65]    [Pg.90]    [Pg.282]    [Pg.33]    [Pg.288]    [Pg.137]    [Pg.152]    [Pg.158]    [Pg.166]    [Pg.166]    [Pg.167]    [Pg.177]    [Pg.44]    [Pg.194]    [Pg.245]    [Pg.10]    [Pg.11]    [Pg.37]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Liquid particles

Particle states

© 2024 chempedia.info