Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical conductivity point

This section considers the influence of a cement layer surrounding the casing from the electrical conductivity point of view, i.e. any other effect apart from the ohmic drop has not been considered. [Pg.52]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

The swelling of the adsorbent can be directly demonstrated as in the experiments of Fig. 4.27 where the solid was a compact made from coal powder and the adsorbate was n-butane. (Closely similar results were obtained with ethyl chloride.) Simultaneous measurements of linear expansion, amount adsorbed and electrical conductivity were made, and as is seen the three resultant isotherms are very similar the hysteresis in adsorption in Fig. 4.27(a), is associated with a corresponding hysteresis in swelling in (h) and in electrical conductivity in (c). The decrease in conductivity in (c) clearly points to an irreversible opening-up of interparticulate junctions this would produce narrow gaps which would function as constrictions in micropores and would thus lead to adsorption hysteresis (cf. Section 4.S). [Pg.236]

The composition to the melting point is estimated to be 65% Na AlF, 14% NaF, and 21% NaAlF [1382-15-3], The ions Na" and F ate the principal current carrying species in molten cryoHte whereas the AIF is less mobile. The stmctural evidences are provided by electrical conductivity, density, thermodynamic data, cryoscopic behavior, and the presence of NaAlF in the equiUbtium vapor (19,20). [Pg.143]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

Potassium, a soft, low density, silver-colored metal, has high thermal and electrical conductivities, and very low ionization energy. One useful physical property of potassium is that it forms Hquid alloys with other alkah metals such as Na, Rb, and Cs. These alloys have very low vapor pressures and melting points. [Pg.515]

Specifications for gas turbine fuels prescribe test limits that must be met by the refiner who manufactures fuel however, it is customary for fuel users to define quality control limits for fuel at the point of delivery or of custody transfer. These limits must be met by third parties who distribute and handle fuels on or near the airport. Tests on receipt at airport depots include appearance, distfllation, flash point (or vapor pressure), density, freezing point, smoke point, corrosion, existing gum, water reaction, and water separation. Tests on delivery to the aircraft include appearance, particulates, membrane color, free water, and electrical conductivity. [Pg.411]

Borides have metallic characteristics such as high electrical conductivity and positive coefficients of electrical resistivity. Many of them, particularly the borides of metals of Groups 4 (IVB), 5 (VB), and 6 (VIB), the MB compounds of Groups 2(11) and 13(111), and the borides of aluminum and siUcon, have high melting points, great hardness, low coefficients of thermal expansion, and good chemical stabiUty. [Pg.218]

The Group 4—6 carbides are thermodynamically very stable, exhibiting high heats of formation, great hardness, elevated melting points, and resistance to hydrolysis by weak acids. At the same time, these compounds have values of electrical conductivity. Hall coefficients, magnetic susceptibiUty, and heat capacity in the range of metals (7). [Pg.440]

Carbon electrodes are the normal choice for the link in the connection chain to deflver power to the arc tip. Graphite may be used in special apphcations, but the higher cost of graphite favors the use of carbon electrodes. Carbon possesses properties ideal to its appHcation as an electrode. These properties include no softening point, no melting point, electrical conductivity, strength increases with increasing temperature, resistivity drops as temperature increases, available in the size and purity desired, and cost effectiveness. [Pg.520]

NaCl stmcture with the ions Ce ", S , and one electron in a conduction band. This sulfide has a high (in the metallic range) electrical conductivity, a high thermal conductivity, a high (ca 2715 K) melting point, and good thermal shock resistance. [Pg.367]

One feature of oxides is drat, like all substances, they contain point defects which are most usually found on the cation lattice as interstitial ions, vacancies or ions with a higher charge than dre bulk of the cations, refened to as positive holes because their effect of oxygen partial pressure on dre electrical conductivity is dre opposite of that on free electron conductivity. The interstitial ions are usually considered to have a lower valency than the normal lattice ions, e.g. Zn+ interstitial ions in the zinc oxide ZnO structure. [Pg.140]

The heat capacity is largely determined by the vibration of die metal ion cores, and tlris property is also close to tlrat of tire solid at the melting point. It therefore follows tlrat both the thermal conductivity and the heat capacity will decrease with increasing teirrperamre, due to the decreased electrical conductivity and the increased amplitude of vibration of the ion cores (Figure 10.1). [Pg.298]

The mobilities of ions in molten salts, as reflected in their electrical conductivities, are an order of magnitude larger than Arose in Are conesponding solids. A typical value for diffusion coefficient of cations in molten salts is about 5 X lO cm s which is about one hundred times higher Aran in the solid near the melting point. The diffusion coefficients of cation and anion appear to be about the same in Are alkali halides, wiAr the cation being about 30% higher tlrair Are anion in the carbonates and nitrates. [Pg.318]

The remarkable theoretical predictions mentioned above are even more difficult to verify by experimental measurements in the case of electrical conductivity. Ideally, one has to solve two experimental problems. First, one has to realize a four-point measurement on an individual nanotube. That means four contacts on a sample with typical dimensions of the order of a nm... [Pg.123]

The early pioneers also include Benjamin Franklin and Charles de Coulomb. Franklin studied the effect of point electrodes in drawing electric currents. Coulomb discovered that a charged object gradually loses its charge i.e., he actually discovered the electrical conductivity of air. Coulomb s importance for the development of electrostatic air-cleaning methods is great, mainly because the present theories about electric charges and electric fields are based on his work. [Pg.1211]

Electrochemically, the system metal/molten salt is somewhat similar to the system metal/aqueous solution, although there are important differences, arising largely from differences in temperature and in electrical conductivity. Most fused salts are predominantly ionic, but contain a proportion of molecular constituents, while pure water is predominantly molecular, containing very low activities of hydrogen and hydroxyl ions. Since the aqueous system has been extensively studied, it may be instructive to point out some analogues in fused-salt systems. [Pg.435]

ELEMENT CRYSTAL STRUCTURE DENSITY (g/ml) MELTING POINT (°Q HEAT OF vaporization (kcal/mole) ELECTRICAL CONDUCTIVITY (ohm-cm)r ... [Pg.381]


See other pages where Electrical conductivity point is mentioned: [Pg.148]    [Pg.157]    [Pg.148]    [Pg.157]    [Pg.1960]    [Pg.6]    [Pg.241]    [Pg.241]    [Pg.25]    [Pg.124]    [Pg.143]    [Pg.127]    [Pg.466]    [Pg.121]    [Pg.548]    [Pg.43]    [Pg.763]    [Pg.16]    [Pg.550]    [Pg.86]    [Pg.279]    [Pg.119]    [Pg.203]    [Pg.3]    [Pg.735]    [Pg.266]    [Pg.660]    [Pg.831]    [Pg.251]    [Pg.455]    [Pg.20]    [Pg.258]    [Pg.37]   
See also in sourсe #XX -- [ Pg.280 , Pg.281 , Pg.282 ]




SEARCH



© 2024 chempedia.info