Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paraffinic hydrocarbons, oxidation

Further evidence in support of the peroxide theory has resulted from a study of the slow oxidation of pentene/5 This work is of more particular interest from the point of view of paraffin hydrocarbon oxidation as applied to knocking phenomena, however, and will not be discussed here. [Pg.211]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

Catalytic Oxidation for Straight-Chain Paraffinic Hydrocarbons. Synthetic fatty acids (SFA) are produced by Eastern European countries, Russia, and China using a manganese-catalyzed oxidation of selected paraffinic streams. The technology is based on German developments that were in use during World War II. The production volume in 1984 was estimated to be about 5.5 x ICf t/yr. The oxidation is highly exothermic and is carried out at about 105—125°C, mostly in continuous equipment. [Pg.92]

JS/oble Metals. Noble or precious metals, ie, Pt, Pd, Ag, and Au, are ftequendy alloyed with the closely related metals, Ru, Rh, Os, and Ir (see Platinum-GROUP metals). These are usually supported on a metal oxide such as a-alumina, a-Al202, or siUca, Si02. The most frequently used precious metal components are platinum [7440-06-4J, Pt, palladium [7440-05-3] Pd, and rhodium [7440-16-6] Rh. The precious metals are more commonly used because of the abiUty to operate at lower temperatures. As a general rule, platinum is more active for the oxidation of paraffinic hydrocarbons palladium is more active for the oxidation of unsaturated hydrocarbons and CO (19). [Pg.503]

As mentioned in Chapter 2, methane is a one-carhon paraffinic hydrocarbon that is not very reactive under normal conditions. Only a few chemicals can he produced directly from methane under relatively severe conditions. Chlorination of methane is only possible by thermal or photochemical initiation. Methane can be partially oxidized with a limited amount of oxygen or in presence of steam to a synthesis gas mixture. Many chemicals can be produced from methane via the more reactive synthesis gas mixture. Synthesis gas is the precursor for two major chemicals, ammonia and methanol. Both compounds are the hosts for many important petrochemical products. Figure 5-1 shows the important chemicals based on methane, synthesis gas, methanol, and ammonia. ... [Pg.135]

Oxidation of C12-C14 n-paraffms using boron trioxide catalysts was extensively studied for the production of fatty alcohols.Typical reaction conditions are 120-130°C at atmospheric pressure. ter-Butyl hydroperoxide (0.5 %) was used to initiate the reaction. The yield of the alcohols was 76.2 wt% at 30.5% conversion. Fatty acids (8.9 wt%) were also obtained. Product alcohols were essentially secondary with the same number of carbons and the same structure per molecule as the parent paraffin hydrocarbon. This shows that no cracking has occurred under the conditions used. The oxidation reaction could be represented as ... [Pg.183]

Higher paraffinic hydrocarbons than methane are not generally used for producing chemicals by direct reaction with chemical reagents due to their lower reactivities relative to olefins and aromatics. Nevertheless, a few derivatives can be obtained from these hydrocarbons through oxidation, nitration, and chlorination reactions. These are noted in Chapter 6. [Pg.404]

Kolbel et al. (K16) examined the conversion of carbon monoxide and hydrogen to methane catalyzed by a nickel-magnesium oxide catalyst suspended in a paraffinic hydrocarbon, as well as the oxidation of carbon monoxide catalyzed by a manganese-cupric oxide catalyst suspended in a silicone oil. The results are interpreted in terms of the theoretical model referred to in Section IV,B, in which gas-liquid mass transfer and chemical reaction are assumed to be rate-determining process steps. Conversion data for technical and pilot-scale reactors are also presented. [Pg.120]

Paraffin hydrocarbons of molecular mass 300 to 700 (i.e. 20-50 carbon atoms) require emulsification with surfactants. They show good resistance to oxidation and yellowing. [Pg.244]

Schubert, C.C., Pease, R.N. (1956) The oxidation of lower paraffin hydrocarbons. I. Room temperature reaction of methane, propane, n-butane and isobutane with ozonized oxygen. J. Am. Chem. Soc. 78, 2044—2048. [Pg.403]

A very serious problem was to clear up the formation of hydroperoxides as the primary product of the oxidation of a linear aliphatic hydrocarbon. Paraffins can be oxidized by dioxygen at an elevated temperature (more than 400 K). In addition, the formed secondary hydroperoxides are easily decomposed. As a result, the products of hydroperoxide decomposition are formed at low conversion of hydrocarbon. The question of the role of hydroperoxide among the products of hydrocarbon oxidation has been specially studied on the basis of decane oxidation [82]. The kinetics of the formation of hydroperoxide and other products of oxidation in oxidized decane at 413 K was studied. In addition, the kinetics of hydroperoxide decomposition in the oxidized decane was also studied. The comparison of the rates of hydroperoxide decomposition and formation other products (alcohol, ketones, and acids) proved that practically all these products were formed due to hydroperoxide decomposition. Small amounts of alcohols and ketones were found to be formed in parallel with ROOH. Their formation was explained on the basis of the disproportionation of peroxide radicals in parallel with the reaction R02 + RH. [Pg.40]

The initiating action of ozone on hydrocarbon oxidation was demonstrated in the case of oxidation of paraffin wax [110] and isodecane [111]. The results of these experiments were described in a monograph [109]. The detailed kinetic study of cyclohexane and cumene oxidation by a mixture of dioxygen and ozone was performed by Komissarov [112]. Ozone is known to be a very active oxidizing agent [113 116]. Ozone reacts with C—H bonds of hydrocarbons and other organic compounds with free radical formation, which was proved by different experimental methods. [Pg.130]

Scheme A. This scheme is typical of the hydrocarbons, which are oxidized with the production of secondary hydroperoxides (nonbranched paraffins, cycloparaffins, alkylaro-matic hydrocarbons of the PhCH2R type) [3,146]. Hydroperoxide initiates free radicals by the reaction with RH and is decomposed by reactions with peroxyl and alkoxyl radicals. The rate of initiation by the reaction of hydrocarbon with dioxygen is negligible. Chains are terminated by the reaction of two peroxyl radicals. The rates of chain initiation by the reactions of hydroperoxide with other products are very low (for simplicity). The rate of hydroperoxide accumulation during hydrocarbon oxidation should be equal to ... Scheme A. This scheme is typical of the hydrocarbons, which are oxidized with the production of secondary hydroperoxides (nonbranched paraffins, cycloparaffins, alkylaro-matic hydrocarbons of the PhCH2R type) [3,146]. Hydroperoxide initiates free radicals by the reaction with RH and is decomposed by reactions with peroxyl and alkoxyl radicals. The rate of initiation by the reaction of hydrocarbon with dioxygen is negligible. Chains are terminated by the reaction of two peroxyl radicals. The rates of chain initiation by the reactions of hydroperoxide with other products are very low (for simplicity). The rate of hydroperoxide accumulation during hydrocarbon oxidation should be equal to ...
C=C bond hydrogenation, olefin + H2-> paraffin C=0 bond hydrogenation, acetone + H2 -> isopropanol Complete oxidation of hydrocarbons, oxidation of CO 3H2 + N2 -> 2NH3... [Pg.357]

Selectox catalyst was developed to oxidize H2S to sulfur and S02 in the presence of hydrogen, paraffin hydrocarbons or ammonia The latter compounds are effectively inert at temperatures which allow complete oxidation of H2S. Figure 3 shows the direct oxidation section of the Lingen plant. About 80 percent recovery of sulfur is achieved, even though the initial concentration of H2S is only 1 to 2 percent. [Pg.62]

All hydrocarbon oils react with oxygen upon exposure to air at sufficiently elevated temperatures for long periods of time. Over the range of temperatures developed in engine crankcase, the rate of oil oxidation has been found to double for every 20°F rise in temperature. Although all lubricating oil hydrocarbons are susceptible to oxidation, of more importance to engine performance are the oxidation products. Paraffinic hydrocarbons... [Pg.323]

Naphtenic hydrocarbons yield products similar to paraffins upon oxidation. Aromatic hydrocarbons are che most readily oxidized constituents of lubricating oils. The end products are very complex condensation and polymerization products and tend to be Insoluble in oil. These products constitute the sludges, resins and varnishes which allegedly cause piston ring sticking in the engine. [Pg.324]

Volume I coversthc paraffinic hydrocarbons, hulogenatcd hydrocarbons, and some of the other oxygenuted hydrocarbons (alcohols, oxides, and glycols)... [Pg.5]

As with ethane and other paraffin hydrocarbons, propane is an important raw material for the ethylene petrochemical industry. The decomposition of propane in hot tubes to form ethylene also yields another important product, propylene. The oxidation of propane to compounds such as acetaldehyde is also of commercial interest. [Pg.142]

The statements of the possible role of HO radicals in saturated hydrocarbon oxidation processes is proved by experimentally determined formation of sufficient amounts of hydrogen peroxide and HO radicals during oxidation of propane [27] and paraffin dehydrogenation products [28-30],... [Pg.15]

This question is discussed in detail in the book by Skarchenko [52], It is noted that dehydrogenation of paraffin hydrocarbons dominates by selectivity over thermal cracking in the presence of iodine or other halogens, sulfur-containing compounds, oxygen and nitrous oxide. For example, in the presence of iodine dehydration dominates in the system, whereas in the case of other additives, independently of their amounts—oxygen, ethylene oxide and nitric acid—the main shift of the process toward cracking is preserved. [Pg.104]

Vapor-phase nitration of paraffin hydrocarbons, particularly propane, can be brought about by uncatalyzed contact between a large excess of hydrocarbon and nitric acid vapor at around 400°C, followed by quenching. A multiplicity of nitrated and oxidized products results from nitrating propane nitromethane, nitroethane, nitropropanes, and carbon dioxide all appear, but yields of useful products are fair. Materials of construction must be very oxidation-resistant and are usually of ceramic-lined steel. The nitroparaffins have found limited use as fuels for race cars, submarines, and model airplanes. Their reduction products, the amines, and other hydroxyl compounds resulting from aldol condensations have made a great many new aliphatic syntheses possible because of their ready reactivity. [Pg.621]


See other pages where Paraffinic hydrocarbons, oxidation is mentioned: [Pg.104]    [Pg.306]    [Pg.104]    [Pg.306]    [Pg.18]    [Pg.258]    [Pg.74]    [Pg.182]    [Pg.539]    [Pg.82]    [Pg.113]    [Pg.59]    [Pg.271]    [Pg.74]    [Pg.296]    [Pg.1194]    [Pg.113]    [Pg.210]    [Pg.211]    [Pg.1565]    [Pg.399]    [Pg.15]    [Pg.625]    [Pg.66]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Hydrocarbon oxidation paraffin

Oxidation of paraffinic hydrocarbons

Paraffin hydrocarbon

Paraffinic hydrocarbons

Paraffins oxidation

© 2024 chempedia.info