Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reactions defined

Meta/ Oxides. The metal oxides aie defined as oxides of the metals occurring in Groups 3—12 (IIIB to IIB) of the Periodic Table. These oxides, characterized by high electron mobiUty and the positive oxidation state of the metal, ate generally less active as catalysts than are the supported nobel metals, but the oxides are somewhat more resistant to poisoning. The most active single-metal oxide catalysts for complete oxidation of a variety of oxidation reactions are usually found to be the oxides of the first-tow transition metals, V, Cr, Mn, Fe, Co, Ni, and Cu. [Pg.503]

The concept of oxidation number leads directly to a working definition of the terms oxidation and reduction. Oxidation is defined as an increase in oxidation number and reduction as a decrease in oxidation number. Consider once again the reaction of zinc with a strong acid ... [Pg.88]

A battery is an electrochemical cell, and is defined as a device comprising two or more redox couples (where each couple comprises two redox states of the same material). An oxidation reaction occurs at the negative pole of the battery in tandem with a reduction reaction at the positive pole. Both reactions proceed with the passage of current. The two redox couples are separated physically by an electrolyte. [Pg.288]

Oxidation of dihydroquinacridone to quinacridone may be achieved, for instance, with the sodium salt of m-nitrobenzene sulfonic acid in aqueous ethanol in the presence of sodium hydroxide solution [7]. A distinction is made between heterogeneous and homogeneous oxidation. The reaction is referred to as a solid state oxidation if the solvent contains approximately 2% sodium hydroxide solution. A content of approximately 30% sodium hydroxide solution relative to the solvent mixture, on the other hand, converts the reaction into a so-called solution oxidation . The type of ring closure defines the crystal modification of the resulting dihydroquinacridone, while the oxidation technique defines the crystal phase of the quinacridone pigment. [Pg.455]

In organic chemistry, oxidation is defined as a reaction in which a carhon atom forms more bonds to oxygen, O, or less bonds to hydrogen, H. An oxidation that involves the formation of double C = O bonds may also be classified as an elimination reaction. [Pg.60]

The decomposition of cuprous xanthate by oxidation is defined by the following reactions ... [Pg.94]

Power et al. (2005) show the effeet of pH and initial As(III) coneentration on the kineties of arsenite oxidation at bimessite-water interfaees, when a competitive metal (e.g., Zn) is present in an adsorbed or nonadsorbed state (Fig. 16.5). Two well-defined trends in the As(III) oxidation reactions can be distinguished (1) the extent of As(III) oxidation decreases with increasing pH from 4.5 to 6.0 and (2) oxidation on a percent basis is suppressed with increasing initial As(III) concentration from 100 to 300 dM. The pH effects on As(III) oxidation may have been influenced by competitive adsorption reactions between As(III) and reaction products (e.g., Mn(II)) and were not influenced by arsenic solution speciation. The suppressed As(III) oxidation rate constant may be a result of differences in the amount of Mn(II) release, which compete with dissolved As(III) species for unreacted Mn(IV) surface sites, and of Mn(II) adsorption, which inhibit the reaction between As(III) and Mn(IV) surface sites. [Pg.323]

The same reasoning applies to the reaction from right to left in the general equation (6.6). The rate of the oxidation reaction v is defined as the number of moles m of Red... [Pg.80]

The reaction of magnesium and oxygen is an example of an oxidation reaction. The combination of an element with oxygen was the traditional way to define an oxidation reaction. This definition of oxidation has been broadened by chemists to include reactions that do not involve oxygen. Our modern definition for oxidation is that oxidation takes place when a substance loses electrons. Anytime oxidation takes place and a substance loses one or more electrons, another substance must gain the electron(s). When a substance gains one or more electrons, the process is known as reduction. Reactions that involve the transfer of one or more electrons always involve both oxidation and reduction. These reactions are known as oxidation-reduction or redox reactions. [Pg.177]

An indication of the degree of exothermicity of sulphide oxidation reactions can be gained by comparing the enthalpy of formation (A//f), that is, a measure of the energy locked up in each chemical species, relative to native elements. The difference in enthalpies of formation of all reactants and all products defines the enthalpy (heat released or absorbed) of the reaction. Thermodynamic data on sulphide minerals, such as pyrite, are notoriously varied and disputed, and the values in Table 4 must be treated with caution. Nevertheless, depending on whether one defines the reaction as ending in an aqueous solution (equation 5), an intermediate secondary sulphate (e.g., melanterite - equation 6) or in complete oxidation to an oxyhydroxide (equation 7), the calculated reaction enthalpy (AH°) released is of the order of at least 1000 kJ/mol. [Pg.505]

Fire, or combustion is a chemical reaction, and specifically it is an oxidation reaction. Oxidation is defined as the chemical combination of oxygen with any substance. In other words, whenever oxygen (and some other materials) combines chemically with a substance, that substance is said to have been oxidized. Rust is an example of oxidized iron. In this case, the chemical reaction is very slow. The very rapid oxidation of a substance is called combustion, or fire. [Pg.170]

Major emphasis has been on the isolation and identification of the main decomposition products arising from one electron oxidation reactions with the pyrimidine and purine bases of isolated DNA and related model compounds13,14D. In recent years, major interest has been devoted on the delineation of the mechanistic features of charge transfer within double stranded DNA. This is mostly achieved using defined-sequence oligonucleotides in which radical cations are generated in most cases by photo-ionization of selected nucleobases and 2-deoxyribose. For more information on these systems, the reader is encouraged to read the recent review article by Cadet et al.134 and other references mentioned there in. [Pg.95]

The present chapter will primarily focus on oxidation reactions over supported vanadia catalysts because of the widespread applications of these interesting catalytic materials.5 6,22 24 Although this article is limited to well-defined supported vanadia catalysts, the supported vanadia catalysts are model catalyst systems that are also representative of other supported metal oxide catalysts employed in oxidation reactions (e.g., Mo, Cr, Re, etc.).25 26 The key chemical probe reaction to be employed in this chapter will be methanol oxidation to formaldehyde, but other oxidation reactions will also be discussed (methane oxidation to formaldehyde, propane oxidation to propylene, butane oxidation to maleic anhydride, CO oxidation to C02, S02 oxidation to S03 and the selective catalytic reduction of NOx with NH3 to N2 and H20). This chapter will combine the molecular structural and reactivity information of well-defined supported vanadia catalysts in order to develop the molecular structure-reactivity relationships for these oxidation catalysts. The molecular structure-reactivity relationships represent the molecular ingredients required for the molecular engineering of supported metal oxide catalysts. [Pg.38]


See other pages where Oxidation reactions defined is mentioned: [Pg.511]    [Pg.360]    [Pg.113]    [Pg.233]    [Pg.192]    [Pg.412]    [Pg.86]    [Pg.95]    [Pg.413]    [Pg.567]    [Pg.624]    [Pg.118]    [Pg.285]    [Pg.319]    [Pg.243]    [Pg.38]    [Pg.484]    [Pg.122]    [Pg.143]    [Pg.19]    [Pg.277]    [Pg.361]    [Pg.32]    [Pg.11]    [Pg.479]    [Pg.33]    [Pg.74]    [Pg.209]    [Pg.282]    [Pg.80]    [Pg.95]    [Pg.478]    [Pg.279]    [Pg.264]    [Pg.18]    [Pg.479]    [Pg.566]    [Pg.50]   
See also in sourсe #XX -- [ Pg.28 , Pg.444 ]

See also in sourсe #XX -- [ Pg.576 ]




SEARCH



Defining Reactions

Oxidant, defined

Oxidation defined

Oxidation-reduction reactions defined

Oxides defined

Reactions defined

© 2024 chempedia.info