Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical temperature measurement

For most purposes only the Stokes-shifted Raman spectmm, which results from molecules in the ground electronic and vibrational states being excited, is measured and reported. Anti-Stokes spectra arise from molecules in vibrational excited states returning to the ground state. The relative intensities of the Stokes and anti-Stokes bands are proportional to the relative populations of the ground and excited vibrational states. These proportions are temperature-dependent and foUow a Boltzmann distribution. At room temperature, the anti-Stokes Stokes intensity ratio decreases by a factor of 10 with each 480 cm from the exciting frequency. Because of the weakness of the anti-Stokes spectmm (except at low frequency shift), the most important use of this spectmm is for optical temperature measurement (qv) using the Boltzmann distribution function. [Pg.209]

This monograph, I believe, is unique in that it covers the broader topic of pyrometry the latter chapters on infrared and optical temperature measurement, thermal conductivity, and glass viscosity are generally not treated in books on thermal analysis but are commercially and academically important. I have resisted the urge to elaborate on some topics by using ex-... [Pg.290]

Wickersheim, K. A. and Alves, R. B. (1979), Recent Advances in Optical Temperature Measurement, Industrial ResearchIDevelopment, 21, 82. [Pg.332]

The investigator who wants to make an EDL is thus faced with a very large amount of information dispersed in the literature and finds it very difficult to reproduce these procedures to develop EDL with the properties desired. An experimental vacuum system for EDL (Hg, Hgl2, Cd, T, KI, P, Se, S) manufacture has recently been designed by Cirkva and coworkers (Fig. 19.4) [58]. The technique is very simple and enables the preparation of EDL in a conventional chemistry laboratory. Examples of EDL are shown in Fig. 19.5. EDL performance is tested to prepare the lamps for spectral measurements [58]. A typical experimental system for such testing comprises a round-bottomed flask, placed in a MW oven, containing n-heptane and equipped with fiber-optic temperature measurement, a spectral probe, and a Dimroth condenser (Fig. 19.6). [Pg.865]

Any Ca, Mg or Zn which may be dissolved in the Ce is removed by placing the product in a crucible made of MgO, CaO, BeO or Ta, wdiich in turn is placed in a second crucible made of graphite. This assembly is placed in a quartz tube with one end closed and the other connected to a high-vacuum pump via a water-cooled brass coupling. The coupling is provided with a glass window to facilitate optical temperature measurement. The well-insulated quartz tube is placed for 30 minutes in an induction furnace heated to 1250 °C. The melt is held at this temperature for 10-15 minutes, until cessation of bubbling. [Pg.1143]

Alkemper J, Sous S, Stocker C, Ratke L (1998) Directional solidification in an aerogel furnace with high resolution optical temperature measurement. J Crystal Growth 191 252-260... [Pg.788]

At room temperature Vai = 10 pm (infrared) and at 6000 °K = 0.5 pm (green). The fact that the color of a body depends on its temperature is used in optical temperature measurements. This is often referred to as infrared temperature measurement even though some measurements may occur outside the infrared region of the spectrum. The infrared region ranges from a wavelength of 0.7 pm to about 400 pm. [Pg.170]

Temperature measurements ranging from 760 to 1760°C are made usiag iron—constantan or chromel—alumel thermocouples and optical or surface pyrometers. Temperature measuriag devices are placed ia multiple locations and protected to allow replacement without iaciaerator shutdown (see... [Pg.55]

The deterrnination of surface temperature and temperature patterns can be made noninvasively using infrared pyrometers (91) or infrared cameras (92) (see Infrared technology and raman spectroscopy). Such cameras have been bulky and expensive. A practical portable camera has become available for monitoring surface temperatures (93). An appropriately designed window, transparent to infrared radiation but reflecting microwaves, as well as appropriate optics, is needed for this measurement to be carried out during heating (see Temperature measurement). [Pg.343]

Figure 4.29. Sample assembly for optical shock temperature measurements. The sample consists of a metal film deposited on a transparent substrate which serves as both an anvil and a transparent window through which thermal radiation is emitted. Rapid compression of gases and surface irregularities at the interface between the sample film and the driver produce very high temperatures in this region. The bottom portion of the figure illustrates the thermal distribution across through the assembly. (After Bass et al. (1987).)... Figure 4.29. Sample assembly for optical shock temperature measurements. The sample consists of a metal film deposited on a transparent substrate which serves as both an anvil and a transparent window through which thermal radiation is emitted. Rapid compression of gases and surface irregularities at the interface between the sample film and the driver produce very high temperatures in this region. The bottom portion of the figure illustrates the thermal distribution across through the assembly. (After Bass et al. (1987).)...
The noncontact measurement principle, usually called optical or radiation temperature measurement, is based on detecting electromagnetic radiation emitted from an object. In ventilation applications this method of measurement is used to determine surface temperatures in the infrared region. The advantage is that the measurement can be carried out from a distance, without contact with the surface, which possibly influences the heat balance and the temperatures. The disadvantages are that neither air (or other fluid) temperature nor internal temperature of a material can be measured. Also the temper-... [Pg.1136]

Several experimental techniques may be used, such as acid/base titration, electrical conductivity measurement, temperature measurement, or measurement of optical properties such as refractive index, light absorption, and so on. In each case, it is necessary to specify the manner of tracer addition, the position and number of recording stations, the sample volume of the detection system, and the criteria used in locating the end-point. Each of these factors will influence the measured value of mixing time, and therefore care must be exercised in comparing results from different investigations. [Pg.299]

A particularly difficult problem in microwave processing is the correct measurement of the reaction temperature during the irradiation phase. Classical temperature sensors (thermometers, thermocouples) will fail since they will couple with the electromagnetic field. Temperature measurement can be achieved either by means of an immersed temperature probe (fiber-optic or gas-balloon thermometer) or on the outer surface of the reaction vessels by means of a remote IR sensor. Due to the volumetric character of microwave heating, the surface temperature of the reaction vessel will not always reflect the actual temperature inside the vessel [7]. [Pg.31]

Temperature measurement is achieved by means of a fiber-optic probe immersed in a single reference vessel. An available option is an IR sensor for monitoring the outside surface temperature of each vessel, mounted in the sidewall of the cavity about 5 cm above the bottom. The reaction pressure is measured by a pneumatic sensor connected to one reference vessel. Therefore, the parallel rotors should be filled with identical reaction mixtures to ensure homogeneity. [Pg.35]

CombiCHEM System (Fig. 3.9) For small-scale combinatorial chemistry applications, this barrel-type rotor is available. It can hold two 24- to 96-well microtiter plates utilizing glass vials (0.5-4 mL) at up to 4 bar at 150 °C. The plates are made of Weflon (graphite-doped Teflon) to ensure uniform heating and are sealed by an inert membrane sheet. Axial rotation of the rotor tumbles the microwell plates to admix the individual samples. Temperature measurement is achieved by means of a fiber-optic probe immersed in the center of the rotor. [Pg.39]

Temperature measurement in the rotor systems is accomplished by means of an immersed fiber-optic probe in one reference vessel or by an IR sensor on the surface of the vessels positioned at the bottom of the cavity. Pressure measurement in HP-... [Pg.41]

Routine temperature measurement within the Discover series is achieved by means of an IR sensor positioned beneath the cavity below the vessel. This allows accurate temperature control of the reaction even when using minimal volumes of materials (0.2 mL). The platform also accepts an optional fiber-optic temperature sensor system that addresses the need for temperature measurement where IR technology is not suitable, such as with sub-zero temperature reactions or with specialized reaction vessels. Pressure regulation is achieved by means of the IntelliVent pressure management technology. If the pressure in the vial exceeds 20 bar, the... [Pg.53]

The other limit is the problem of temperature measurements. Classical temperature sensors could be avoided in relation to power level. Hence, temperature measurements will be distorted by strong electric currents induced inside the metallic wires insuring connection of temperature sensor. The technological solution is the optical fiber thermometers [35-39]. However, measurements are limited below 250 °C. For higher values, surface temperature can be estimated by infrared camera or pyrometer [38, 40], However, due to volumic character of microwave heating, surface temperatures are often inferior to core temperatures. [Pg.22]

The reactor has facilitated a diverse range of synthetic reactions at temperatures up to 200 °C and 1.4 Pa. The temperature measurements taken at the microwave zone exit indicate that the maximum temperature is attained, but they give insufficient information about thermal gradients within the coil. Accurate kinetic data for studied reactions are thus difficult to obtain. This problem has recently been avoided by using fiber optic thermometer. The advantage of continuous-flow reactor is the possibility to process large amounts of starting material in a small volume reactor (50 mL, flow rate 1 L hr1). A similar reactor, but of smaller volume (10 mL), has been described by Chen et al. [117]. [Pg.371]

The spin crossover characteristics of the corresponding Fe(II) compounds may be fine tuned by the systematic variation of the substituent at N-4 of the 1,2,4-triazole ring, as well as by changing the non-coordinated anionic groups. In this way, thermochromic Fe(II) materials showing a spin transition close to room temperature and accompanied by hysteresis have been obtained. As an example, the optical reflectivity measurements record-... [Pg.141]


See other pages where Optical temperature measurement is mentioned: [Pg.335]    [Pg.567]    [Pg.78]    [Pg.329]    [Pg.784]    [Pg.285]    [Pg.423]    [Pg.335]    [Pg.567]    [Pg.78]    [Pg.329]    [Pg.784]    [Pg.285]    [Pg.423]    [Pg.343]    [Pg.66]    [Pg.76]    [Pg.243]    [Pg.72]    [Pg.310]    [Pg.312]    [Pg.206]    [Pg.287]    [Pg.589]    [Pg.94]    [Pg.26]    [Pg.47]    [Pg.80]    [Pg.132]    [Pg.245]    [Pg.370]    [Pg.425]    [Pg.139]    [Pg.162]   


SEARCH



Optical measurements

Optical temperature

Temperature measurement

© 2024 chempedia.info