Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Open polyethylene

Premixed blends of acrylamide and bisacrylamide prepared with varius ratios of monomers were purchased from Eastman Kodak Chemical Company (Rochester, NY). The 37.5 1 and the 19 1 preparations were used for the study. Gels made from these mixtures will be referred to as 2.6% and 5% cross-linked polyacrylamides, respectively. Five grams of each monomer blend were added to 95-g portions of distilled water. Solution was achieved by mixing for 1 h. To each sample was added 1 ml each of a 1% solution of N, N, N, N -tetramethylethylenediamine (Eastman Chemical Co., New Haven, CT) and a 10% solution of ammonium persulfate (Mallinckrodt Laboratory Chemicals, Phillipsburg, N.1). The solutions were poured into an open polyethylene mold and allowed to cure for 12 h at room temperature. The gels were carefully removed and placed in an excess of distilled sterile water for 48 h. The water was replaced several times during the equilibration period. It was felt that this was sufficient to remove unreacted monomers and impurities. The gels were then cut with a steel-ruled die into circles 40 imn in diameter. [Pg.179]

Next to an open polyethylene irradiation vial is an assembly consisting of a 150 mg sample of ceramic material to the left and a smaller diameter neutron-spectrum monitor (in the form of a Cr, Au, Mo pellet) ready for irradiation... [Pg.1581]

Various geometric coring patterns ki polyurethanes (171,175) and ki latex foam mbber (176) exert significant influences on thek compressive behavior. A good discussion of the effect of cell size and shape on the properties of flexible foams is contained ki References 60 and 156. The effect of open-ceU content is demonstrated ki polyethylene foam (173). [Pg.413]

Plastic. A plastic bag usuaUy consists of a single heavy waU of plastic film, woven sheets of plastic tape, or laminates. Principal materials of constmction are polyethylene and polypropylene (see Fibers, olefin). Both transparent and opaque sheeting are used, and printabUity usuaUy is exceUent. Plastic bags can be fiUed and closed with conventional equipment beat-sealing is essential for open-mouthed bags to effect a moisture barrier. [Pg.514]

Finish removers are manufactured in open or closed ketdes. Closed ketdes are preferred because they prevent solvent loss and exposure to personnel. To reduce air emissions from the solvents, condensers are employed on vent stacks. Mild steel or black iron ketdes are used for neutral or basic removers stainless steel (316 or 317) or reinforced polyethylene ketdes are used for acidic removers. The ketdes are heated to increase dispersion of paraffin waxes and aid in the mixing of other ingredients. Electric or air driven motors drive either sweeping blade or propeller mixers that give sufficient lift to rotate and mix the Hquid. Dispenser-type mixers are used to manufacture thick and viscous removers. Ketde, fittings, mixer, and fill equipment must be fabricated with materials resistant to the chemicals in remover formulas. [Pg.553]

Addition or chain-growth polymerization involves the opening of a double bond to form new bonds with adjacent monomers, as typified by the polymerization of ethylene to polyethylene ... [Pg.430]

The tubular positive plate uses rigid, porous fiber glass tubes covered with a perforated plastic foil as the active material retainer (Fig. 2). Dry lead oxide, PbO, and red lead, Pb O, are typically shaken into the tubes which are threaded over the grid spines. The open end is then sealed by a polyethylene bar. Patents describe a procedure for making a type of tube for the tubular positive plate (90) and a method for filling tubular plates of lead—acid batteries (91). Tubular positive plates are pickled by soaking in a sulfate solution and are then cured. Some proceed directiy to formation and do not requite the curing procedure. [Pg.578]

In 1955 it was discovered that mixtures of ammonium nitrate and fine coal dust have satisfactory blasting capabilities in large (9 inch) holes used in open-pit coal mines to remove the rock and soil covering the coal. Polyethylene bags containing this material deform to fit the hole and provide moderate water resistance. ANFO is used in open-pit iron and copper mines and for construction such as road building. The mixture is air blown into 2-inch holes or less m maiiv underground mines. [Pg.275]

It was noted early by Smid and his coworkers that open-chained polyethylene glycol type compounds bind alkali metals much as the crowns do, but with considerably lower binding constants. This suggested that such materials could be substituted for crown ethers in phase transfer catalytic reactions where a larger amount of the more economical material could effect the transformation just as effectively as more expensive cyclic ethers. Knbchel and coworkers demonstrated the application of open-chained crown ether equivalents in 1975 . Recently, a number of applications have been published in which simple polyethylene glycols are substituted for crowns . These include nucleophilic substitution reactions, as well as solubilization of arenediazonium cations . Glymes have also been bound into polymer backbones for use as catalysts " " . [Pg.312]

A similar but more serious incident occurred in a polyethylene plant in 1989. A take-off branch was dismantled to clear a choke. The 8-in. valve isolating it from the reactor loop (the Demco valve in Figure 1-2) was open, and hot ethylene under pressure came out and exploded, killing 23... [Pg.2]

Ethylene oxide is a highly active intermediate. It reacts with all compounds that have a labile hydrogen such as water, alcohols, organic acids, and amines. The epoxide ring opens, and a new compound with a hydroxyethyl group is produced. The addition of a hydroxyethyl group increases the water solubility of the resulting compound. Eurther reaction of ethylene oxide produces polyethylene oxide derivatives with increased water solubility. [Pg.192]

The production process for polyethylene separators (Sec. 9.2.2.1) as well as the characteristic properties (see Sec. 9.2.2.1 and 9.2.3.1) have already been described in detail above. Deviating therefrom, the desire for low acid displacement has to be added for separators in open stationary batteries. This can be met either by decreasing the backweb thickness or by increasing the porosity the latter, however, is at the expense of separator stability. [Pg.277]

Table 12 shows the physicochemical data of separators used in open stationary batteries. Since the emphasis is on low acid displacement, low electrical resistance, and high chemical stability, the phenolic resin-resorcinol separator is understandably the preferred system, even though polyethylene separators, especially at low backweb, are frequently used. For large electrode spacing and consequently high separation thickness, microporous as well as sintered... [Pg.278]

A similar example is the formation of nonstoichiometric interpolymeric complexes between mutually complementary polyelectrolytes — polycation and polyanion [69,70], They behave like true polymer networks and are capable of swelling the interpolymeric complexes between PAAc and polyethylene piperazine swells, for instance, 16-18 times [70], Also advantageous in this case is the possibility to carry out this type of crosslinking in open systems, such as soil. [Pg.107]

Gas-filled plastics are polymer materials — disperse systems of the solid-gas type. They are usually divided into foam plastics (which contain mostly closed pores and cells) and porous plastics (which contain mostly open communicating pores). Depending on elasticity, gas-filled plastics are conventionally classified into rigid, semi-rigid, and elastic, categories. In principle, they can be synthesized on the basis of any polymer the most widely used materials are polystyrene, polyvinyl chloride, polyurethanes, polyethylene, polyepoxides, phenol- and carbamideformaldehyde resins, and, of course, certain organosilicon polymers. [Pg.100]

When water (a Newtonian liquid) is in an open-ended pipe, pressure can be applied to move it. Doubling the water pressure doubles the flow rate of the water. Water does not have a shear-thinning action. However, in a similar situation but using a plastic melt (a non-Newtonian liquid), if the pressure is doubled the melt flow may increase from 2 to 15 times, depending on the plastic used. As an example, linear low-density polyethylene (LLDPE), with a low shear-thinning action, experiences a low rate increase, which explains why it can cause more processing problems than other PEs. The higher-flow melts include polyvinyl chloride (PVC) and polystyrene (PS). [Pg.447]

Adventitious surfactants also have a marked effect on the mechanism of coalescence. In studying the coalescence of curved water surfaces, Lindblad (L8) used aged distilled water that was stored for about 30 h in a polyethylene bottle opened to the air through a narrow polyethylene tube inserted in the water. He found that if fresh distilled water (water exposed not longer than 1 h to the air) was used, the delay time in coalescence was approximately half as long. Consequently, he concluded that this difference is due to some form of contamination which settled into the water or onto the water surface. [Pg.329]

Poly(f -caprolactone) (PCL), the most representative member of this polyester family, is obtained by the ring-opening polymerization of e-caprolactone. It is a low-7 (60°C), low-Tg (—60°C) semicrystalline polyester that presents mechanical properties resembling those of low-density polyethylene (Table 2.10). [Pg.43]

Short fiber reinforcement of TPEs has recently opened up a new era in the field of polymer technology. Vajrasthira et al. [22] studied the fiber-matrix interactions in short aramid fiber-reinforced thermoplastic polyurethane (TPU) composites. Campbell and Goettler [23] reported the reinforcement of TPE matrix by Santoweb fibers, whereas Akhtar et al. [24] reported the reinforcement of a TPE matrix by short silk fiber. The reinforcement of thermoplastic co-polyester and TPU by short aramid fiber was reported by Watson and Prances [25]. Roy and coworkers [26-28] studied the rheological, hysteresis, mechanical, and dynamic mechanical behavior of short carbon fiber-filled styrene-isoprene-styrene (SIS) block copolymers and TPEs derived from NR and high-density polyethylene (HOPE) blends. [Pg.353]

The microalgae are cultured in bioreactors under solar or artiflcial light in the presence of carbon dioxide and salts. The bioreactors may be closed systems made of polyethylene sleeves rather than open pools. Optimal conditions for pigment production are low to medium light intensity and medium temperatures (20 to 30°C). Pigment extraction is achieved by cell breakage, extraction into water or buffered solution, and centrifugation to separate out the filtrate. The filtrate may then be partly purified and sterilized by microfiltration and spray dried or lyophilized. [Pg.411]

Because plants present chlorophylls and carotenoids simultaneously, it may be useful to separate both groups from each other in a laboratory or preparative scale in order to avoid contamination in further purification steps, mainly when they are prepared in large amounts. Clean-up procedures using an open column packed with absorbents such as alumina, magnesia, polyethylene powder, powdered sucrose, DEAE-Sepharose, starch, cellulose, or MgO HyfloSupercel are good approaches. MgO HyfloSupercel in a proportion of 1 1 or 1 2 is the usual adsorbent. Sucrose and cellulose are interesting as they do not alter the chlorophylls, but they are tedious to work with. [Pg.432]

An example of this method of determining e is shown in Figure 3 where the Am has been calculated as a function of e for three HP-LDPE resins, designated LDPE A, B, and C. LDPE A was produced at the highest conversion and LDPE C at the lowest conversion. The SEC data used were obtained at 140°C in 1,2,4-trichlorobenzene. The Mark-Houwink coefficients used for linear polyethylene were K = 5.1 x 10-4 dl/gm and a = 0.706. The 13c NMR Xm values are indic ted by open triangles. [Pg.139]


See other pages where Open polyethylene is mentioned: [Pg.41]    [Pg.280]    [Pg.41]    [Pg.280]    [Pg.24]    [Pg.413]    [Pg.138]    [Pg.140]    [Pg.535]    [Pg.262]    [Pg.1955]    [Pg.1956]    [Pg.1960]    [Pg.242]    [Pg.271]    [Pg.835]    [Pg.413]    [Pg.54]    [Pg.583]    [Pg.85]    [Pg.155]    [Pg.560]    [Pg.603]    [Pg.66]    [Pg.88]    [Pg.232]    [Pg.179]    [Pg.464]    [Pg.146]    [Pg.370]   
See also in sourсe #XX -- [ Pg.322 ]




SEARCH



Ring-opening polymerization polyethylene oxide

© 2024 chempedia.info