Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Parameters olefins

Several modifications of the Engler-Schleyer force field have appeared. White (27) added olefin parameters and used an efficient two-stage Newton-Raphson minimization modification. The accuracy of the White force field regarding heat of formation calculations is... [Pg.123]

Olefin Parameter rate Molecular rate Observed Calculated ... [Pg.198]

These are carbon monoxide, CO, unburned hydrocarbons (HC), and the nitrogen oxides, NO. In the U.S.A., a program called Auto/Oil (Burns et al., 1992), conducted by automotive manufacturers and petroleum companies, examined the effect of overall parameters of fuel composition on evaporative emissions and in the exhaust gases. The variables examined were the aromatics content between 20 and 45%, the olefins content between 5 and 20%, the MTBE content between 0 and 15% and finally the distillation end point between 138 and 182°C (more exactly, the 95% distilled point). [Pg.259]

Crystallinity and Density. These two parameters, which are closely related, depend mosdy on the amount of a-olefin in the copolymer. Both density and crystallinity of ethylene copolymers are also influenced by their compositional uniformity. Eor example, for LLDPE resias with different a-olefin (1-hexene) content, the density (g/cm ) is as follows ... [Pg.394]

Physical Properties. LLDPE is a sernicrystaUine plastic whose chains contain long blocks of ethylene units that crystallize in the same fashion as paraffin waxes or HDPE. The degree of LLDPE crystallinity depends primarily on the a-olefin content in the copolymer (the branching degree of a resin) and is usually below 40—45%. The principal crystalline form of LLDPE is orthorhombic (the same as in HDPE) the cell parameters of nonbranched PE are a = 0.740 nm, b = 0.493 nm, and c (the direction of polymer chains) = 0.2534 nm. Introduction of branching into PE molecules expands the cell slightly thus a increases to 0.77 nm and b to around 0.50 nm. [Pg.395]

Physical Properties. Table 3 Hsts physical properties of stereoregular polymers of several higher a-olefins. Crystal ceU parameters of these polymers ate available (34—36). AU. stereoregular polyolefins have helix conformations ia the crystalline state. Their densities usually range from 0.90 to 0.95 g/cm. Crystalline PMP, however, represents an exception its density is only 0.812—0.815 g/cm, lower even than that of amorphous PMP (0.835—0.840 g/cm ), thus making it one of the lowest densities among plastics. [Pg.427]

Polymorphism. Many crystalline polyolefins, particularly polymers of a-olefins with linear alkyl groups, can exist in several polymorphic modifications. The type of polymorph depends on crystallisa tion conditions. Isotactic PB can exist in five crystal forms form I (twinned hexagonal), form II (tetragonal), form III (orthorhombic), form P (untwinned hexagonal), and form IP (37—39). The crystal stmctures and thermal parameters of the first three forms are given in Table 3. Form II is formed when a PB resin crystallises from the melt. Over time, it is spontaneously transformed into the thermodynamically stable form I at room temperature, the transition takes about one week to complete. Forms P, IP, and III of PB are rare they can be formed when the polymer crystallises from solution at low temperature or under pressure (38). Syndiotactic PB exists in two crystalline forms, I and II (35). Form I comes into shape during crystallisation from the melt (very slow process) and form II is produced by stretching form-1 crystalline specimens (35). [Pg.427]

Titanium Trichloride. Titanium trichloride [7705-07-9] exists in four different soHd polymorphs that have been much studied because of the importance of TiCl as a catalyst for the stereospecific polymerization of olefins (120,124). The a-, y-, and 5-forms are all violet and have close-packed layers of chlorines. The titaniums occupy the octahedral interstices between the layers. The three forms differ in the arrangement of the titaniums among the available octahedral sites. In a-TiCl, the chlorine sheets are hexagonaHy close-packed in y-TiCl, they are cubic close-packed. The brown P-form does not have a layer stmcture but, instead, consists of linear strands of titaniums, where each titanium is coordinated by three chlorines that act as a bridge to the next Ti The stmctural parameters are as follows ... [Pg.129]

Many researchers have correlated the overall decomposition as an nxh. order reaction, with most paraffins following the first order and most olefins following a higher order. In general, isoparaffin rate constants are lower than normal paraffin rate constants. The rate constants are somewhat dependent on conversion due to inhibition effects that is, the rate constant often decreases with increasing conversion, and the order of conversion is not affected. This has been explained by considering the formation of aHyl radicals (38). To predict the product distribution, yields are often correlated as a function of conversion or other severity parameters (39). [Pg.437]

Like NR, SBR is an unsaturated hydrocarbon polymer. Hence unvulcanised compounds will dissolve in most hydrocarbon solvents and other liquids of similar solubility parameter, whilst vulcanised stocks will swell extensively. Both materials will also undergo many olefinic-type reactions such as oxidation, ozone attack, halogenation, hydrohalogenation and so on, although the activity and detailed reactions differ because of the presence of the adjacent methyl group to the double bond in the natural rubber molecule. Both rubbers may be reinforced by carbon black and neither can be classed as heat-resisting rubbers. [Pg.292]

In a senes of papers. Tedder and co-workers reported the factors determining the reactivity of perfluormated radicals with various fluoroethylenes Relative Arrhenius parameters for tnfluoromethyl radicals [17] and pentafluoroethyl radicals [/5] were determined, with higher selectivity demonstrated for the higher homologue Selectivity of addition to unsymmetncal olefins was found also to increase with greater radical branching [19]... [Pg.749]

The stereoisomers of olefin saturation are often those derived by cis addition of hydrogen to the least hindered side of the molecule (99). But there are many exceptions and complications (97), among which is the difficulty of determining which side of the molecule is the least hindered. Double-bond isomerization frequently occurs, and the hydrogenation product is the resultant of a number of competing reactions. Experimentally, stereochemistry has been found to vary, sometimes to a marked degree, with olefin purity, reaction parameters, solvent, and catalyst 30,100). Generalizing, it is expedient, when unwanted products arise as a result of prior isomerization, to avoid those catalysts and conditions that are known to favor isomerization. [Pg.45]

High thermodynamic selectivity (7) demands that the initially formed cis olefin be displaced rapidly relative to its saturation or to its isomerization. As the reaction nears completion and the acetylene concentration diminishes, its effectiveness in displacing olefin will diminish and selectivity will fall. Displacement by acetylene is also impeded through depletion of acetylene in the vicinity of the catalyst owing to intra- or interpartile diffusion resistance (53a). A change in a reaction parameter thus can have different influences... [Pg.57]

ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

The composition of AOS and IOS is determined by the choice of the olefin feedstock, by the way the feedstock is sulfonated and by manufacturing conditions. As will be shown later, the structural parameters such as hydrophobe chain length and branching, the ratio of alkene- to hydroxyalkanesulfonate, and (for AOS) the mono disulfonate ratio determine the physicochemical properties of AOS and IOS these in turn determine the performance of AOS and IOS in their end formulations. [Pg.364]

Of course the observation of olefin-Br2 CTCs in solutions of olefins and Bt2 does not necessarily mean that these are essential intermediates in olefin bromination. However the above thermodynamic and kinetic parameters allowed us to answer the question of the mechanistic role played by the CTCs. In fact, if they were unreactive species whose only effect is to reduce the concentration of the actual reactants, Scheme 2 would be valid. The observed k3 would be given by... [Pg.130]

RATE PARAMETERS FOR FIRST STAGE OF THE OXIDATION OF OLEFINS BY PERMANGANATE... [Pg.300]

H2SO4 = 0.09 M, fi = 2.0 M). Arrhenius parameters are A 10 ° I.mole . sec and E 28.5 kcal.mole . Successive alkylation of the olefinic bond increases the rate of reaction. One unusual feature is the lack of any acidity dependence. This implies that Co(H20)g is the active oxidant and that a radical cation is formed initially the lack of any retardation by added Co(II) means that the initial step is irreversible, viz. [Pg.375]

This type of reaction is involved as an intermediate step in few synthetically useful reactions, in the formation of polysulfones by copolymerization of an olefin with SO 2, as well as in aerosol formation in polluted atmospheres. We will discuss later in some detail the most important chain reactions involving step 11. However, Good and Thynne determined the Arrhenius parameters for the addition of methyl and ethyl radicals to SO2 in gas phase, the rate constants being 5 x 10 and 4 x 10 s respectively at ambient... [Pg.1097]

Scheme 21.1 Heck arylation of acrolein and acrolein diethylacetal. was the most important parameter among all those evaluated (i.e. KCl, solvent...) that affect the selectivity (Scheme 21.1, Route 3). However, moderate activity and selectivity were achieved when using the 9-bromoanthracene whatever the olefin (8). This was attributed to the large steric hindrance of this substrate. Scheme 21.1 Heck arylation of acrolein and acrolein diethylacetal. was the most important parameter among all those evaluated (i.e. KCl, solvent...) that affect the selectivity (Scheme 21.1, Route 3). However, moderate activity and selectivity were achieved when using the 9-bromoanthracene whatever the olefin (8). This was attributed to the large steric hindrance of this substrate.
The SEC mechanism demands only an isocratic (constant composition) solvent system with normally a single solvent. The most frequently used organic solvents are THF, chloroform, toluene, esters, ketones, DMF, etc. The key solvent parameters of interest in SEC are (i) solubility parameter (ii) refractive index (iii) UV/IR absorbance (iv) viscosity and (v) boiling point. Sample solutions are typically prepared at concentrations in the region of 0.5-5 mg mL-1. In general an injection volume of 25-100p,L per 300 x 7.5 mm column should be employed. For SEC operation with polyolefins chlorinated solvents (for detector sensitivity and increased boiling point) and elevated temperatures (110 to 150 °C) are required to dissolve olefin polymer. HFIP is the preferred solvent for SEC analysis of polyesters and polyamides. [Pg.259]

In contrast to kinetic models reported previously in the literature (18,19) where MO was assumed to adsorb at a single site, our preliminary data based on DRIFT results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups being coordinated to the catalyst. This diadsorption mode for a-p unsaturated ketones and aldehydes on palladium have been previously suggested based on quantum chemical predictions (20). A two parameter empirical model (equation 4) where - rA refers to the rate of hydrogenation of MO, CA and PH refer to the concentration of MO and the hydrogen partial pressure respectively was developed. This rate expression will be incorporated in our rate-based three-phase non-equilibrium model to predict the yield and selectivity for the production of MIBK from acetone via CD. [Pg.265]

Aromatics, olefins and in general, unsaturated compounds undergo hydrogenation reactions, usually unwanted due to their detrimental effect on the operating costs, derived from an excessive consumption of hydrogen. Aromatic saturation, however, is used in jet fuel to improve the smoke point and in diesel for cetane enhancement. In the case of gasoline, extreme hydrogenation leads to a deterioration of the fuel performance parameters. [Pg.15]


See other pages where Parameters olefins is mentioned: [Pg.355]    [Pg.396]    [Pg.403]    [Pg.502]    [Pg.344]    [Pg.2377]    [Pg.214]    [Pg.158]    [Pg.561]    [Pg.197]    [Pg.139]    [Pg.1097]    [Pg.117]    [Pg.119]    [Pg.146]    [Pg.254]    [Pg.132]    [Pg.28]    [Pg.53]    [Pg.60]    [Pg.159]    [Pg.146]    [Pg.91]    [Pg.377]    [Pg.265]    [Pg.92]    [Pg.24]   
See also in sourсe #XX -- [ Pg.141 , Pg.142 , Pg.144 , Pg.147 , Pg.180 ]




SEARCH



© 2024 chempedia.info