Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oil presence

Martel, J. (1977) Fractional crystallisation of the triglycerides of virgin olive oil. Presence of semi-drying oils. Grasas Aceites, 28, 189-198. [Pg.22]

Those that are determined by the reservoir and system temperature, salinity, oil (presence and type), pressure level, and gas type. [Pg.333]

Di Bella G, Saitta M, Pellegrino M, et al. 1999. Contamination of Italian citrus essential oils Presence of phthalate esters. J Agric Food Chem 47 1009-1012. [Pg.158]

This work described the cotton treatment with EC microcapsules prepared by phase separation method. The size range of EC microcapsules depended on the stirring speed employed in encapsulation. Reducing the stirrer speed increased the size of microcapsules. The oil presence in EC microcapsule has been proved by vibrational spectroscopic analysis after microcapsules dissolution in acetone or after sonication in cyclohexane. The obtained EC microcapsules were bonded to cotton fabrics through the... [Pg.233]

Oil presence is generally considered beneficial, as far as oil exerts a kind of inhibition effect In fact, on a steel surface, oil may form a film thick and adherent enough to inhibit water wetting. On the other hand, gas and condensates do not generally exert any beneficial effect, as they have no inhibition property. [Pg.64]

The generic term azulene was first applied to the blue oils obtained by distillation, oxidation, or acid-treatment of many essential oils. These blue colours are usually due to the presence of either guaiazulene or velivazulene. The parent hydrocarbon is synthesized by dehydrogenation of a cyclopentanocycloheptanol or the condensation of cyclopentadiene with glutacondialdehyde anil. [Pg.49]

C, b.p. 81"C. Manufactured by the reduction of benzene with hydrogen in the presence of a nickel catalyst and recovered from natural gase.s. It is inflammable. Used as an intermediate in the preparation of nylon [6] and [66] via caprolactam and as a solvent for oils, fats and waxes, and also as a paint remover. For stereochemistry of cyclohexane see conformation. U.S. production 1980 1 megatonne. [Pg.122]

CH2C1 CH2C1. Colourless liquid with an odour like that of chloroform b.p. 84 C. It is an excellent solvent for fats and waxes. Was first known as oil of Dutch chemists . Manufactured by the vapour- or liquid-phase reaction of ethene and chlorine in the presence of a catalyst. It reacts with anhydrous ethano-ales to give ethylene glycol diethanoate and with ammonia to give elhylenediamine, these reactions being employed for the manufacture of these chemicals. It burns only with difficulty and is not decomposed by boiling water. [Pg.134]

CH2=CHC = CCH = CH2. a colourless liquid which turns yellow on exposure to the air it has a distinct garlic-like odour b.p. 83-5°C. Manufactured by the controlled, low-temperature polymerization of acetylene in the presence of an aqueous solution of copper(I) and ammonium chlorides. It is very dangerous to handle, as it absorbs oxygen from the air to give an explosive peroxide. When heated in an inert atmosphere, it polymerizes to form first a drying oil and finally a hard, brittle insoluble resin. Reacts with chlorine to give a mixture of chlorinated products used as drying oils and plastics. [Pg.145]

C, b.p. 156 C. The most important of the terpene hydrocarbons. It is found in most essential oils derived from the Coniferae, and is the main constituent of turpentine oil. Contains two asymmetric carbon atoms. The (- -)-form is easily obtained in a pure state by fractionation of Greek turpentine oil, of which it constitutes 95%. Pinene may be separated from turpentine oil in the form of its crystalline nitrosochloride, CioHigClNO, from which the ( + )-form may be recovered by boiling with aniline in alcoholic solution. When heated under pressure at 250-270 C, a-pinene is converted into dipentene. It can be reduced by hydrogen in the presence of a catalyst to form... [Pg.314]

Piperitone is of considerable technical im portance. It is a colourless oil of a pleasant peppermint-like smell. (-)-Piperilone has b.p. 109-5-110-5 C/I5mm. Piperitone yields thymol on oxidation with FeCl. On reduction with hydrogen in presence of a nickel catalyst it yields menthone. On reduction with sodium in alcoholic solution all forms of piperitone yield racemic menthols and womenthols together with some racemic a-phel)andrene. [Pg.316]

Obtained by the catalytic hydrogenation of naphthalene. Owing to the presence of one aromatic ring it can be nitrated and sulphon-ated. It is non-toxic and is used as a solvent for fats, oils and resins. [Pg.390]

In oil bearing formations, the presence of polar chemical functions of asphaltenes probably makes the rock wettable to hydrocarbons and limits their production. It also happens that during production, asphaltenes precipitate, blocking the tubing. The asphaltenes are partly responsible for the high viscosity and specific gravity of heavy crudes, leading to transport problems. [Pg.13]

This product, given the abbreviation FOD (fuel-oil domestique) in France, still held a considerable market share there of 17 Mt in 1993. However, since 1973 when its consumption reached 37 Mt, FOD has seen its demand shrink gradually owing to development of nuclear energy and electric heating. FOD also faces strong competition with natural gas. Nevertheless, its presence in the French, European and worldwide petroleum balance will still be strong beyond tbe year 2000. [Pg.233]

There are available standard accelerated oxidation tests that consist of passing air or oxygen through an oil at elevated temperature. The test is conducted with or without the presence of catalysts or water. [Pg.285]

These reactions can explain the absence of olefins in crude oil, their presence being detected only in the crudes of low sulfur content. The sulfur content in crude from Bradford which is the one of the rare crudes containing olefins is about 0.4%. [Pg.321]

The presence of thiophene and its derivatives in crude oils was detected in 1899, but until 1953, the date at which the methyl-thiophenes were identified in kerosene from Agha Jari, Iran crude oil, it was believed that they came from the degradation of sulfides during refining operations. Finally, their presence was no longer doubted after the identification of benzothiophenes and their derivatives (Table 8.9), and lately of naphthenobenzothiophenes in heavy cuts. [Pg.324]

The presence of such substances in crude oil is highly undesirable because they can plug piping and contaminate the products. [Pg.327]

The water and sediment contents of crude oils is measured according to the standard methods NF M 07-020, ASTM D 96 and D 1796, which determine the volume of water and sediments separated from the crude by centrifuging in the presence of a solvent (toluene) and of a demulsifylng agent Table 8.13 gives the bottom sediment and water content of a few crude oils. [Pg.327]

Regardless of their presence in very small amounts, on the order of a few dozen ppm (Table 8.14), mineral salts cause serious problems during crude oil treatment. [Pg.328]

The presence of salts in crude oils has several disadvantages ... [Pg.328]

Hydrogen chloride released dissolves in water during condensation in the crude oil distillation column overhead or in the condenser, which cause corrosion of materials at these locations. The action of hydrochloric acid is favored and accelerated by the presence of hydrogen sulfide which results in the decomposition of sulfur-containing hydrocarbons this forces the refiner to inject a basic material like ammonia at the point where water condenses in the atmospheric distillation column. [Pg.329]

The presence of these acids in crude oils and petroleum cuts causes problems for the refiner because they form stable emulsions with caustic solutions during desalting or in lubricating oil production very corrosive at high temperatures (350-400°C), they attack ordinary carbon steel, which necessitates the use of alloy piping materials. [Pg.331]

Initial portion of the TBP curve of a Saharan crude oil (Note the discontinuities due to the presence of aromatics benzene B, toluene T, xylenes X). [Pg.333]

The crankcase of a gasoline or diesel engine is in reality a hydrocarbon oxidation reactor oil is submitted to strong agitation in the presence of air at high temperature (120°C) furthermore, metals such as copper and iron, excellent catalysts for oxidation, are present in the surroundings. [Pg.358]

The conversion takes place at high temperature (820-850°C) and very short residence time (hundredth of seconds) in the presence of steam. The by-products are hydrogen, methane and a highly aromatic residual fuel-oil. [Pg.382]

Introduction and commercial application Safety and the environment have become important elements of all parts of the field life cycle, and involve all of the technical and support functions in an oil company. The Piper Alpha disaster in the North Sea in 1988 has resulted in a major change in the approach to management of safety of world-wide oil and gas exploration and production activities. Companies recognise that good safety and environmental management make economic sense and are essential to guaranteeing long term presence in the industry. [Pg.65]

The non-hydrocarbon components of crude oil may be small in volume percent, typically less than 1 %, but their influence on the product quality and the processing requirements can be considerable. It is therefore important to identify the presence of these components as early as possible, and certainly before the field development planning stage, to enable the appropriate choice of processing facilities and materials of construction to be made. [Pg.93]

The resistivity log can also be used to define oil / water or gas / water contacts. Figure 5.53 shows that the fluid contact can be defined as the point at which the resistivity begins to increase in the reservoir interval, inferring the presence of hydrocarbons above that point. [Pg.149]

Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane- Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane-<yclohexane at 30°C 6 ideal, with a = 38.4, 7 ideallike with empirical a of 109.3, (a values in A /molecule) (from Ref. 93). (b) Surface tension isotherms at 350°C for the systems (Na-Rb) NO3 and (Na-Cs) NO3. Dotted lines show the fit to Eq. ni-55 (from Ref. 83). (c) Water-ethanol at 25°C. (d) Aqueous sodium chloride at 20°C. (e) Interfacial tensions between oil and water in the presence of sodium dodecylchloride (SDS) in the presence of hexanol and 0.20 M sodium chloride. Increasing both the surfactant and the alcohol concentration decreases the interfacial tension (from Ref. 92).
The topic of spreading rates is of importance in the technology of the use of mono-layers for evaporation control (see Section IV-6) it is also important, in the opposite sense, in the lubrication of fine bearings, as in watches, where it is necessary that the small drop of oil remain in place and not be dissipated by spreading. Zisman and coworkers have found that spreading rates can be enhanced or reduced by the presence of small amounts of impurities in particular, strongly adsorbed surfactants can form a film over which the oil will not spread [48]. [Pg.111]


See other pages where Oil presence is mentioned: [Pg.187]    [Pg.143]    [Pg.226]    [Pg.156]    [Pg.407]    [Pg.187]    [Pg.143]    [Pg.226]    [Pg.156]    [Pg.407]    [Pg.95]    [Pg.127]    [Pg.128]    [Pg.131]    [Pg.165]    [Pg.184]    [Pg.226]    [Pg.247]    [Pg.259]    [Pg.260]    [Pg.416]    [Pg.5]    [Pg.62]    [Pg.27]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Feed oils, free fatty acids presence

Foam Stability in the Presence of Oil

Smooth Particles with Edges in Presence of Spread Oil Layers

© 2024 chempedia.info