Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Obtaining concentration data

The actual concentrations of any substance migrating from the packaging into each and every foodstuff are uncertain. In order to evaluate the exposure to any substance, it is necessary to determine the amount of each and every foodstuff consumed, which may have been in contact with the substance, and the concentration of the substance in each and every foodstuff consumed. Surveillance surveys do not measure the concentration of a substance in every foodstuff, but are typically more targeted towards those foodstuffs in which the substance(s) being surveyed are considered to have their highest levels. [Pg.129]

Simulant code Composition of the simulant Foodstuffs that the simulant represents [Pg.130]

D/X Test value divided by reduction factor X, in the range 2-5, because olive oil is considered too aggressive for many fatty foods [Pg.130]

O No testing required For example, fruits with peel or dry foodstuffs [Pg.130]

One of the main issues with concentration data is how the non-detectable (ND) values are treated. In many instances the substance(s) of interest is non-detectable in either food simulants or real foodstuffs. In a UK FSA survey (2000) for BADGE (bisphenol A diglycidyl ether) in caimed foodstuffs, in more than 95% (105 of III targeted samples tested) of the foodstuffs tested the levels were non-detectable. Using targeted foodstuffs in any surveillance will always skew any results to a higher level, in that only foodstuffs considered most likely to contain the substance will typically be analysed. [Pg.130]


We re-visited the issue of water column N distributions to see if we could find distinctive seasonal patterns related to estuarine type, location within an estuary and climate variability (i.e., wet, dry, average inflow conditions). We obtained ammonium (referred to hereafter as NH4), nitrite (NO2), nitrate (NO3), and phosphate (PO4) concentration data from 44 USA estuarine systems. Several locations (e.g., tidal freshwater, oHgohahne, mesohahne, polyhahne) were selected in some systems and in a dozen cases we also obtained concentration data during dry, average and wet years (Frank et al., 2007). [Pg.813]

Perhaps the most desirable method of obtaining concentration data for pore-water profiles is that of an in situ measurement since all sampling methods appear to suffer from some artifacts. The number of pore-water constituents that has been measured in situ in deep-sea sediments is quite... [Pg.3506]

In practice, potentiometric biosensors are used just like any other membrane electrodes or gas-sensing probe. Calibration plots are prepared using known standards of the biomolecule analytes (usually prepared in a given buffer), and exposing the sensors to these solutions until a steady state emf value can be recorded (usually in 1 to 2 minutes). Plots of emf versus log [substrate] are prepared and used to obtain concentration data for unknown samples (either diluted in buffer or nondiluted) that are exposed to the same sensor under exactly the same measurement conditions. [Pg.5600]

Accordingly, the change in concentration (or in temperature) across the reactor can be made as small as desired by upping the recycle ratio. Eventually, the reac tor can become a differential unit with substantially constant temperature, while substantial differences will concurrently arise between the fresh feed inlet and the produc t withdrawal outlet. Such an operation is useful for obtaining experimental data for analysis of rate equations. [Pg.700]

Finally, for situations in which it is not clear that exposure is and will continue to be below the limit values, a detailed survey with a measurement strategy is required. The methods used are based mostly on instruments for sampling the environment in order to obtain reliable measurements of workplace air concentrations. In general, the measurement strategy must consider the most efficient use of resources for the purpose of obtaining quantitative data on exposures by having a clear idea of what the data will be used for or whether it meets the specified need. For example, if the data pertain to peak exposures, these peaks have to be assessed according to the STEL requirements, if any. [Pg.370]

The performance data for plug versus mix reactor were obtained. The data were collected as the inverse of qx vs inverse of substrate concentration. Table E.1.1 shows the data based on obtained kinetic data. From the data plotted in Figure E.1.1, we can minimise the volume of the chemostat. A CSTR works better than a plug flow reactor for the production of biomass. Maximum qx is obtained with a substrate concentration in the leaving stream of 12g m 3. [Pg.300]

As the cell is discharged, Zn2+ ions are produced at the anode while Cu2+ ions are used up at the cathode. To maintain electrical neutrality, SO4- ions must migrate through the porous membrane,dd which serves to keep the two solutions from mixing. The result of this migration is a potential difference across the membrane. This junction potential works in opposition to the cell voltage E and affects the value obtained. Junction potentials are usually small, and in some cases, corrections can be made to E if the transference numbers of the ions are known as a function of concentration.ee It is difficult to accurately make these corrections, and, if possible, cells with transference should be avoided when using cell measurements to obtain thermodynamic data. [Pg.491]

Calculation of the second-order rate constant of carbonylation, kg, and the equilibrium constant, K = [t-C4H9CO+]/[t-C4H ][CO] = A c/fcD> requires knowledge of the concentration of CO. The constant a in Henry s law Pco = [CO] was determined to be 5-3 litre mole atm in HF—SbFs (equimolar) and 53 litre mole atm in FHSOs—SbFs (equimolar) at 20°C. From the ratio [t-C4HBCO+]/[t-C4HJ"] at a known CO pressure, values for k and K were obtained. The data are listed in Table 1, which includes the values for the rate and equilibrium constants of two other tertiary alkyl cations, namely the t-pentyl and the t-adamantyl ions (Hogeveen et al., 1970). [Pg.32]

The presence of a Faradaic electrode reaction of any kind competing with the double layer charging presents a problem in determining the purely capacitive current needed to calculate the surface charge. From a plot of 1 vs. (/ = total electrode current) with a fixed concentration of the ions of the electrode metal dissolved in solution, the surface charge can be obtained [65Butl]. (Data obtained with this method are labelled TC). [Pg.184]

Rodbard and Chrambach [77,329] developed a computer program that allows the determination of molecular parameters, i.e., free mobility, molecular radii, molecular weight, and charge or valence, from measured electrophoretic mobilities in gels with different monomer concentrations. For a set of mobility versus gel concentration data they used the Ferguson [18,115,154] equation to obtain the retardation constant from the negative slope and the free mobility from the extrapolated intercept. From the retardation constant they determined the molecular radius using... [Pg.591]

Altman and King made the first detailed study of this system, using Cr(ril) solutions containing only the monomeric species and Cr(VI) solutions which had been allowed to age. The isotopic method and lead chromate precipitation separation were used to obtain kinetic data at a temperature of 94.8 °C. Over the range of concentrations, Cr(VI) 2.3x10 to 8.4x10 A/, Cr(III) 1.8x10 to... [Pg.83]

Habib and Hunt have continued the study of this reaction, obtaining further data with special reference to the effects of ionic strength, sulphate and hydrogen-ion concentrations. From data obtained on the dependence of the rate on the [H ] at various temperatures, values of the kinetic parameters differing slightly from those above have been obtained. Values of AFff and and AS and AS2 (at n = 1.0 M) obtained were 11.8, 5.3 kcal.mole and —17 and —31 cal.deg mole respectively. The value of 2 was estimated as 6.7 x 10 1. mole sec at 18 °C, n — 1.0 Af. [Pg.113]

Measurement of exposure can be made by determining levels of toxic chemicals in human serum or tissue if the chemicals of concern persist in tissue or if the exposure is recent. For most situations, neither of these conditions is met. As a result, most assessments of exposure depend primarily on chemical measurements in environmental media coupled with semi-quantitative assessments of environmental pathways. However, when measurements in human tissue are possible, valuable exposure information can be obtained, subject to the same limitations cited above for environmental measurement methodology. Interpretation of tissue concentration data is dependent on knowledge of the absorption, excretion, metabolism, and tissue specificity characteristics for the chemical under study. The toxic hazard posed by a particular chemical will depend critically upon the concentration achieved at particular target organ sites. This, in turn, depends upon rates of absorption, transport, and metabolic alteration. Metabolic alterations can involve either partial inactivation of toxic material or conversion to chemicals with increased or differing toxic properties. [Pg.10]

An alternative graphical solution makes use of the biphasic exponential nature of the plasma concentration function ineq. (39.16). At larger time values, when the effect of absorption has decayed, the function behaves approximately as monoexponential. Under these conditions, and after replotting the concentration data on a (decimal) logarithmic scale, one obtains a straight line for the later part of the curve (Fig. 39.8a). This line represents the P-phase of the plasma concentration and is denoted by C ... [Pg.463]

Thus R and k can be obtained from data pertaining only to the assays of the materials involved in the process. This relationship is very useful when the weights of the feed and of the concentrate are not available. It may be mentioned here that the quantity R, by itself, gives no information about the quantities of the concentrate and the tailings. However, R and k, when considered jointly, can adequately express metallurgical results. The enrichment ratio is c/f which is the ratio of the grade of the concentrate to the grade of the feed. [Pg.149]

The parameters are usually obtained from a series of initial rate experiments performed at various substrate concentrations. Data for the hydrolysis of benzoyl-L-tyrosine ethyl ester (BTEE) by trypsin at 30 V and pH 7.5 are given below ... [Pg.60]

The 50.31 MHz 13C NMR spectra of the chlorinated alkanes were recorded on a Varian XL-200 NMR spectrometer. The temperature for all measurements was 50 ° C. It was necessary to record 10 scans at each sampling point as the reduction proceeded. A delay of 30 s was employed between each scan. In order to verify the quantitative nature of the NMR data, carbon-13 Tj data were recorded for all materials using the standard 1800 - r -90 ° inversion-recovery sequence. Relaxation data were obtained on (n-Bu)3SnH, (n-Bu)3SnCl, DCP, TCH, pentane, and heptane under the same solvent and temperature conditions used in the reduction experiments. In addition, relaxation measurements were carried out on partially reduced (70%) samples of DCP and TCH in order to obtain T data on 2-chloropentane, 2,4-dichloroheptane, 2,6-dichloroheptane, 4-chloroheptane, and 2-chloroheptane. The results of these measurements are presented in Table II. In the NMR analysis of the chloroalkane reductions, we measured the intensity of carbon nuclei with T values such that a delay time of 30 s represents at least 3 Tj. The only exception to this is heptane where the shortest T[ is 12.3 s (delay = 2.5 ). However, the error generated would be less than 10%, and, in addition, heptane concentration can also be obtained by product difference measurements in the TCH reduction. Measurements of the nuclear Overhauser enhancement (NOE) for carbon nuclei in the model compounds indicate uniform and full enhancements for those nuclei used in the quantitative measurements. Table II also contains the chemical... [Pg.360]

A negative correlation was found between PbB and systolic pressure in Belgian men in the Cadmibel study (a cross-sectional population study of the health effects of environmental exposure to cadmium) (Staessen et al. 1991). In this study, blood pressure and urinary cation (positive ions found in the urine, such as sodium, potassium, and calcium) concentration data were obtained from 963 men and 1,019 women multiple stepwise regression analyses were conducted adjusting for age, body mass index, pulse... [Pg.55]

The rate constants for deblocking and cure can be obtained by monitoring the concentration of free isocyanate during cure. In the absence of actual concentration data it is possible to obtain good values for the rate constants using a normalization procedure. In addition to the normalization procedure used in this work it is possible to define other normalization functions which may produce significant changes in the contour surface over which the search occurs. [Pg.253]

Graphical Approach to the Analysis of Batteries of Stirred Tank Reactors Operating at Steady State. Even in reaction systems where it is not possible to determine the algebraic form of the reaction rate expression, it is often possible to obtain kinetic data that permit one to express graphically the rate as a function of the concentration of one reactant. Laboratory scale CSTR s are particularly appropriate for generating this type of kinetic data for complex reaction... [Pg.281]

Ionic Polymerization. Ionic polymerizations, especially cationic polymerizations, are not as well understood as radical polymerizations because of experimental difficulties involved in their study. The nature of the reaction media is not always clear since heterogeneous initiators are often involved. Further, it is much more difficult to obtain reproducible data because ionic polymerizations proceed at very fast rates and are highly sensitive to small concentrations of impurities and adventitious materials. Butyl rubber, a polymer of isobutene and isoprene, is produced commercially by cationic polymerization. Anionic polymerization is used for various polymerizations of 1,3-butadiene and isoprene. [Pg.15]


See other pages where Obtaining concentration data is mentioned: [Pg.129]    [Pg.129]    [Pg.148]    [Pg.376]    [Pg.129]    [Pg.129]    [Pg.148]    [Pg.376]    [Pg.384]    [Pg.362]    [Pg.1047]    [Pg.1654]    [Pg.2055]    [Pg.19]    [Pg.231]    [Pg.606]    [Pg.109]    [Pg.58]    [Pg.197]    [Pg.190]    [Pg.453]    [Pg.30]    [Pg.65]    [Pg.939]    [Pg.345]    [Pg.300]    [Pg.248]    [Pg.749]    [Pg.447]    [Pg.501]   


SEARCH



Concentration data

Exposure estimation obtaining concentration data

Obtaining data

© 2024 chempedia.info