Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance performance

Most hydrocarbon resins are composed of a mixture of monomers and are rather difficult to hiUy characterize on a molecular level. The characteristics of resins are typically defined by physical properties such as softening point, color, molecular weight, melt viscosity, and solubiHty parameter. These properties predict performance characteristics and are essential in designing resins for specific appHcations. Actual characterization techniques used to define the broad molecular properties of hydrocarbon resins are Fourier transform infrared spectroscopy (ftir), nuclear magnetic resonance spectroscopy (nmr), and differential scanning calorimetry (dsc). [Pg.350]

Both vapor-phase chromatography and high performance Hquid chromatography, along with nuclear magnetic resonance spectroscopy, have been used for isomer and composition analysis. [Pg.457]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been pubUshed as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance Hquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

The spectroscopic techniques that have been most frequently used to investigate biomolecular dynamics are those that are commonly available in laboratories, such as nuclear magnetic resonance (NMR), fluorescence, and Mossbauer spectroscopy. In a later chapter the use of NMR, a powerful probe of local motions in macromolecules, is described. Here we examine scattering of X-ray and neutron radiation. Neutrons and X-rays share the property of being found in expensive sources not commonly available in the laboratory. Neutrons are produced by a nuclear reactor or spallation source. X-ray experiments are routinely performed using intense synclirotron radiation, although in favorable cases laboratory sources may also be used. [Pg.238]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]

A study on the effectiveness of the E-plastomers as impact modifiers for iPP was carried out in relation to the traditional modifier EPDM. In this study, the flow properties of the E-plastomer-iPP and EPDM-PP blends were also evaluated. The blends were analyzed by solid-state 13C-nuclear magnetic resonance (NMR) spectroscopy, microscopy (SEM), and DSC. The results showed that E-plastomer-PP and EPDM-PP blends present a similar crystallization behavior, which resulted in a similar mechanical performance of the blends. However, the E-plastomer-PP blend presents lower torque values than the EPDM-PP blend, which indicates a better processibility when E-plastomer is used as an impact modifier for iPP. [Pg.172]

Given their radio-frequency electrical properties and nuclear magnetic resonance chemical shift components, solutions of reversed micelles constituted of water, AOT, and decane have been proposed as suitable systems to test and calibrate the performance of magnetic resonance imagers [68]. [Pg.479]

Although saponification was found to be unnecessary for the separation and quantification of carotenoids from leafy vegetables by high performance liquid chromatography (HPLC) or open column chromatography (OCC), saponification is usually employed to clean the extract when subsequent purification steps are required such as for nuclear magnetic resonance (NMR) spectroscopy and production of standards from natural sources. [Pg.452]

D2O = deutered water. HPLC = high performance liquid chromatography. IS = internal standard. MeOH = methanol. MS = mass spectrometry. NMR = nuclear magnetic resonance. PDA = photodiode array detector. TEA = triethylamine. MTBE = methyl tert-butyl ether. [Pg.461]

Strohschein, S., Pursch, M., and Albert, K., Hyphenation of high performance liquid chromatography with nuclear magnetic resonance spectroscopy for the characterization of (3-carotene isomers employing a Cjq stationary phase, J. Pharm. Biom. Anal., 21, 669, 1999. [Pg.476]

Hentschel, P. et ah. Structure elucidation of deoxylutein 11 isomers by on-line capillary high performance liquid chromatography- H nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1112, 285, 2006. [Pg.477]

M.E. Lacey, Z. J. Tan, A. G. Webb, J. V. Sweedler 2001, (Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids), J. Chromatogr. A 922(1-2), 139. [Pg.139]

FID = flame ionization detection GC = gas chromatography HPLC = high performance liquid chromatography ITMS = ion trap mass spectrometry MS = mass spectrometry PNMR = proton nuclear magnetic resonance TLC = thin-layer chromatography... [Pg.134]

Fourier transform infrared (FTIR) spectroscopy was performed oj a Nicolet 10DX spectrometer. Nuclear magnetic resonance ( H) characterization was accomplished using an IBM 270 SL. Both techniques can successfully be utilized to analyze both the diblock precursors as well as the derived acid containing polymers. [Pg.263]

Because carotenoids are light- and oxygen-sensitive, a closed-loop hyphenated technique such as the on-line coupling of high performance liquid chromatography (HPLC) together with nuclear magnetic resonance (NMR) spectroscopy can be used for the artifact-free structural determination of the different isomers. [Pg.61]

In the case of heterogeneous polymers the experimental methods need to be refined. In order to analyze those polymers it is necessary to determine a set of functions / (M), which describe the distribution for each kind of heterogeneity i This could be the mass distributions of the blocks in a diblock copolymer. The standard SEC methods fail here and one needs to refine the method, e.g., by performing liquid chromatography at the critical point of adsorption [59] or combine SEC with methods, which are, for instance, sensitive to the chemical structure, e.g., high-pressure liquid chromatography (HPLC), infrared (IR), or nuclear magnetic resonance spectroscopy (NMR) [57],... [Pg.230]

Although nuclear magnetic resonance (NMR) spectroscopy has been used to study a variety of lanthanide based systems like contrast agents for medical imaging applications, only a handful of studies on lanthanide SMMs using NMR have been performed to date. These include the neutral [Ln(Pc)2]°(Ln = Dy or Tb)... [Pg.132]


See other pages where Nuclear magnetic resonance performance is mentioned: [Pg.8]    [Pg.445]    [Pg.219]    [Pg.483]    [Pg.686]    [Pg.241]    [Pg.544]    [Pg.659]    [Pg.81]    [Pg.177]    [Pg.252]    [Pg.370]    [Pg.328]    [Pg.492]    [Pg.123]    [Pg.434]    [Pg.413]    [Pg.130]    [Pg.181]    [Pg.62]    [Pg.74]    [Pg.339]    [Pg.188]    [Pg.123]    [Pg.212]    [Pg.164]    [Pg.108]    [Pg.172]    [Pg.158]    [Pg.142]    [Pg.264]   
See also in sourсe #XX -- [ Pg.30 , Pg.229 , Pg.235 ]




SEARCH



High-performance liquid chromatography /nuclear magnetic resonance

High-performance liquid chromatography nuclear magnetic resonance with

High-performance liquid chromatography with nuclear magnetic resonance-mass

Nuclear magnetic resonance high-performance liquid

© 2024 chempedia.info