Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric phosphate

Nitric Phosphate. About 15% of worldwide phosphate fertilizer production is by processes that are based on solubilization of phosphate rock with nitric acid iastead of sulfuric or phosphoric acids (64). These processes, known collectively as nitric phosphate or nitrophosphate processes are important, mainly because of the iadependence from sulfur as a raw material and because of the freedom from the environmental problem of gypsum disposal that accompanies phosphoric acid-based processes. These two characteristics are expected to promote eventual iacrease ia the use of nitric phosphate processes, as sulfur resources diminish and/or environmental restrictions are tightened. [Pg.231]

Production of nitric phosphates is not expected to expand rapidly ia the near future because the primary phosphate exporters, especially ia North Africa and the United States, have moved to ship upgraded materials, wet-process acid, and ammonium phosphates, ia preference to phosphate rock. The abundant supply of these materials should keep suppHers ia a strong competitive position for at least the short-range future. Moreover, the developiag countries, where nitric phosphates would seem to be appealing for most crops except rice, have already strongly committed to production of urea, a material that blends compatibly with sulfur-based phosphates but not with nitrates. [Pg.231]

Nonetheless, production and use of nitric phosphates ia Europe are continuing to grow. In general, nitric phosphate processes are somewhat more compHcated than sulfur-based processes and requite higher investment. In the past, several attempts have been made to estabHsh commercial acceptance of this type process ia the United States, but plant operations have been relatively short Hved because of low sulfur prices and resultant competition from sulfur-based processes. [Pg.231]

Nitric Phosphate. Fertilizers that are referred to as nitric phosphate or nitrophos-phate are produced by acidulation of phosphate rock with nitric acid or with mixtures of nitric and sulfuric or phosphoric acids. The primary advantage of nitric phosphate processes is that no sulfur or less sulfur is required as compared with superphosphates or ammonium phosphates this is particularly important during a shortage of sulfur, or in locations where sulfur must be shipped long distances. A variety of processes and equipment have been used in Europe since the late 1930s.3,12 Also there are a number of plants in Central and South America and in Asia. The production of nitric phosphates is complex. Simple substitution of nitric acid in a superphosphate-type acid-rock reaction is not feasible because (1) decomposition of the nitric acid would occur and cause noxious fumes and loss of nitrogen and (2) the product would be extremely hygroscopic and unstable. [Pg.1129]

Organic matter is undesirable in nitric phosphate processes it reacts with nitric acid with emission of nitrogen as NO2 or other nitrogen oxides. [Pg.386]

Meline, R. S., H. L. Faucett, C. H. Davis, and A. R. Shirley, Jr.. 1971. Pilot Plant Development QfJbLe Sulfate Recycle Nitric Phosphate Process, Journa/ o//ndustria/ and Engineering Chemlstrif, Process Design Development, 10 257-264. [Pg.399]

Nitric phosphate is derived from phosphate rock using nitric acid instead of sulphuric (12.9) (sometimes nitric-sulphuric or nitric-phosphoric acid mixtures are used). The calcium nitrate by-product of this reaction must be removed, or the solid fertiliser would be hygroscopic. One method of achieving this is by crystallisation, and the other is by treatment with ammonia. In the latter instance, a mixture of ammonium phosphate, ammonium nitrate and dicalcium phosphate is obtained (12.10). Alternatively, the calcium nitrate can be converted and the product left in the mixture (12.11). [Pg.1030]

Major routes of mineral phosphate (phosphate rock) into finished fertilizers are outlined in Fig. 11.5 and are discussed below. It is obvious from the figure that although phosphate rock is used directly in several major fertilizer production processes (ordinary superphosphate, nitric phosphates), most important processes require that the rock phosphate first be converted to phosphoric acid (H3PO4). Phosphoric acid production, then, is a very significant component of the phosphate fertilizer industry. The processes used for the production of fertilizer-grade phosphoric acid are known collectively as wet processes, and involve, initially, dissolution of the rock in sulfuric acid. (The highly specialized technology of wet-process acid production was discussed in Chapter 10.)... [Pg.378]

Arsenic(V) acid, H3ASO4 (strictly, tetraoxoarsenic(V) acid) is obtained when arsenic is oxidised with concentrated nitric acid or when arsenic(V) oxide is dissolved in water. It is a moderately strong acid which, like phosphoric V) acid, is tribasic arsenates V) in general resemble phosphates(V) and are often isomorphous with them. [Pg.248]

Nitric acid acidulation of phosphate rock produces phosphoric acid, together with dissolved calcium nitrate. Separation of the phosphoric acid for use as an intermediate in other fertilizer processes has not been developed commercially. Solvent extraction is less effective in the phosphoric—nitric system than in the phosphoric—hydrochloric system. Instead, the nitric acid acidulate is processed to produce nitrophosphate fertilizers. [Pg.225]

Nitrophosphates are made by acidulating phosphate rock with nitric acid followed by ammoniation, addition of potash as desired, and granulation or prilling of the slurry. The acidulate, prior to ammoniation, contains calcium nitrate and phosphoric acid or monocalcium phosphate according to the foUowiag equations ... [Pg.231]

Hexafluorophosphoric Acid. Hexafluorophosphoric acid (3) is present under ambient conditions only as an aqueous solution because the anhydrous acid dissociates rapidly to HF and PF at 25°C (56). The commercially available HPF is approximately 60% HPF based on PF analysis with HF, HPO2F2, HPO F, and H PO ia equiUbrium equivalent to about 11% additional HPF. The acid is a colorless Hquid which fumes considerably owiag to formation of an HF aerosol. Frequently, the commercially available acid has a dark honey color which is thought to be reduced phosphate species. This color can be removed by oxidation with a small amount of nitric acid. When the hexafluorophosphoric acid is diluted, it slowly hydrolyzes to the other fluorophosphoric acids and finally phosphoric acid. In concentrated solutions, the hexafluorophosphoric acid estabUshes equiUbrium with its hydrolysis products ia relatively low concentration. Hexafluorophosphoric acid hexahydrate [40209-76-5] 6 P 31.5°C, also forms (66). This... [Pg.226]

Other Salts. Indium nitrate trihydrate [13770-61 -1], In(N02)3 3H20, is a soluble salt prepared by dissolution of the metal or oxide in nitric acid. Indium phosphate [14693-82-4], InPO, is precipitated by adding phosphate ions to a solution of an indium salt. It is soluble in water. [Pg.81]

Mona.Zlte, The commercial digestion process for m on a site uses caustic soda. The phosphate content of the ore is recovered as marketable trisodium phosphate and the rare earths as RE hydroxide (10). The usual industrial practice is to attack finely ground m on a site using a 50% sodium hydroxide solution at 150°C or a 70% sodium hydroxide solution at 180°C. The resultant mixed rare-earth and thorium hydroxide cake is dissolved in hydrochloric or nitric acid, then processed to remove thorium and other nonrare-earth elements, and processed to recover the individual rare earths (see... [Pg.543]

The bath components for a nitrite—nitrate accelerated bath basic to this conversion coating process are (/) 2inc metal or 2inc oxide dissolved in acid (2) phosphate ions added as phosphoric acid (J) addition of an oxidant such as sodium nitrite and (4) addition of nitric acid. Other oxidants such as peroxide, chlorate, chlorate in combination with nitrate, or an organic nitro compound may also be used. [Pg.223]

An improved solvent extraction process, PUREX, utilizes an organic mixture of tributyl phosphate solvent dissolved in a hydrocarbon diluent, typically dodecane. This was used at Savannah River, Georgia, ca 1955 and Hanford, Washington, ca 1956. Waste volumes were reduced by using recoverable nitric acid as the salting agent. A hybrid REDOX/PUREX process was developed in Idaho Falls, Idaho, ca 1956 to reprocess high bum-up, fuUy enriched (97% u) uranium fuel from naval reactors. Other separations processes have been developed. The desirable features are compared in Table 1. [Pg.202]

Sodium nitrate is used as a fertiliser and in a number of industrial processes. In the period from 1880—1910 it accounted for 60% of the world fertiliser nitrogen production. In the 1990s sodium nitrate accounts for 0.1% of the world fertiliser nitrogen production, and is used for some specific crops and soil conditions. This decline has resulted from an enormous growth in fertiliser manufacture and an increased use of less expensive nitrogen fertilisers (qv) produced from synthetic ammonia (qv), such as urea (qv), ammonium nitrate, ammonium phosphates, ammonium sulfate, and ammonia itself (see Ammonium compounds). The commercial production of synthetic ammonia began in 1921, soon after the end of World War I. The main industrial market for sodium nitrate was at first the manufacture of nitric acid (qv) and explosives (see Explosives and propellants). As of the mid-1990s sodium nitrate was used in the production of some explosives and in a number of industrial areas. [Pg.192]

There are a number of minerals in which thorium is found. Thus a number of basic process flow sheets exist for the recovery of thorium from ores (10). The extraction of mona ite from sands is accompHshed via the digestion of sand using hot base, which converts the oxide to the hydroxide form. The hydroxide is then dissolved in hydrochloric acid and the pH adjusted to between 5 and 6, affording the separation of thorium from the less acidic lanthanides. Thorium hydroxide is dissolved in nitric acid and extracted using methyl isobutyl ketone or tributyl phosphate in kerosene to yield Th(N02)4,... [Pg.35]

Oxo Ion Salts. Salts of 0x0 ions, eg, nitrate, sulfate, perchlorate, hydroxide, iodate, phosphate, and oxalate, are readily obtained from aqueous solution. Thorium nitrate is readily formed by dissolution of thorium hydroxide in nitric acid from which, depending on the pH of solution, crystalline Th(N02)4 5H20 [33088-17 ] or Th(N02)4 4H20 [33088-16-3] can be obtained (23). Thorium nitrate is very soluble in water and in a host of oxygen-containing organic solvents, including alcohols, ethers, esters, and ketones. Hydrated thorium sulfate, Th(S0 2 H20, where n = 9, 8, 6, or 4, is... [Pg.37]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

In the tributyl phosphate extraction process developed at the Ames Laboratory, Iowa State University (46—48), a solution of tributyl phosphate (TBP) in heptane is used to extract zirconium preferentially from an acid solution (mixed hydrochloric—nitric or nitric acid) of zirconium and hafnium (45). Most other impurity elements remain with the hafnium in the aqueous acid layer. Zirconium recovered from the organic phase can be precipitated by neutralization without need for further purification. [Pg.430]

Phosphoms determination involves the conversion of phosphoms to soluble phosphate by digesting the coal ash with a mixture of sulfuric, nitric, and hydrofluoric acids (18). Phosphate is precipitated as ammonium phosphomolybdate, which may be reduced to give a blue solution that is determined colorimetricaHy or volumetricaHy (D2795) (18). [Pg.233]

Manufacture of pure products, such as sulfuric acid, nitric acid, nitrates, phosphates, adipic acid, and so on... [Pg.2105]

Nitrophosphate fertilizer is made by digesting phosphate rock with nitric acid. This is the nitrophosphate route leading to NPK fertilizers as in the mixed-acid route, potassium and other salts are added during the process. The resulting solution is cooled to precipitate calcium nitrate, which is removed by filtration methods. The filtrate is neutralized with ammonia, and the solution is evaporated to reduce the water content. The process of prilling may follow. The calcium nitrate filter cake can be further treated to produce a calcium nitrate fertilizer, pure calcium nitrate, or ammonium nitrate and calcium carbonate. [Pg.62]

Instead of using sulfuric or phosphoric acid, nitric acid can be used to treat the phosphate lock to produce calcium nitrate fertilizer. Instead of neutralizing phosphoric acid with calcium which is useless, ammonia can be used to give ammonium phosphate, hence, two fertilizing elements. [Pg.265]

Monoammonium phosphate Diammonium phosphate Nitric oxide Actylonitrile Caprolactam Monomethylamine Dimetliylamine Hexametliylenetetramine Trimetliylamine Monoethanolamine Dietlianolamine Trietlianolamine Hydrogen Cyanide Fatty nitrogen compounds (nitriles, amines, quaternary ammonimn compounds)... [Pg.262]


See other pages where Nitric phosphate is mentioned: [Pg.623]    [Pg.1120]    [Pg.1123]    [Pg.1125]    [Pg.1130]    [Pg.498]    [Pg.34]    [Pg.377]    [Pg.385]    [Pg.386]    [Pg.623]    [Pg.1120]    [Pg.1123]    [Pg.1125]    [Pg.1130]    [Pg.498]    [Pg.34]    [Pg.377]    [Pg.385]    [Pg.386]    [Pg.80]    [Pg.81]    [Pg.231]    [Pg.246]    [Pg.149]    [Pg.51]    [Pg.493]    [Pg.62]    [Pg.62]    [Pg.306]    [Pg.331]    [Pg.261]   
See also in sourсe #XX -- [ Pg.1129 ]




SEARCH



Plutonium ions from nitric acid by tributyl phosphate

© 2024 chempedia.info