Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel alloys lithium chloride

The density of sulfur is close to that of lithium chloride. The volume of solid sulfur formed in reaction (11.9) is less than 16% of the overall volume of solid products. Sulfur dioxide formed in reaction (11.9) is rather soluble in electrolyte, so that the intrinsic pressure in the cells is enhanced negligibly. Despite this, the cases of thionyl chloride-lithium cells are made to be rather strong and the extreme corrosion activity of thionyl chloride enforces application of high-alloy steels or nickel. Sintered glass-metal pressure seals are used in thionyl chloride-lithium cells, same as in cells with some other systems. [Pg.85]

To a stirred solution of 45g 3,5-dimethoxybenzoyl chloride and 17.4g thiophen in 300 ml benzene at 0° C, add dropwise 10.5g freshly distilled stannic chloride. Stir one hour at room temperature and add 200 ml 3% aqueous HC1. Separate the benzene layer and wash the aqueous layer with benzene. Dry and evaporate in vacuum the combined benzene layers and distill the red residue (250° C bath/4.5) to get 45g 2-(3,5-dimethoxybenzoyl) thiophen(I). Recrystallize from petroleum ether. Add a solution of 21 g AICI3 in 160 ml ether to a stirred suspension of 6.1 g lithium aluminum hydride in 140 ml ether. After 5 minutes add a solution of 39g(I) in 300 ml ether at a rate giving a gentle reflux. Reflux and stir 1 hour cool in an ice bath and treat dropwise with 50 ml water, then 50 ml 6N aqueous sulfuric acid. Separate the layers, extract the aqueous layer with 3X100 ml ether and dry, evaporate in vacuum the combined ether layers. Can distill the residue (230° C bath/5mm) to get 27g oily 2-(3,5-dimethoxybenzyl) thiophen (II). Recrystallize from petroleum ether. Reflux a solution of 5g (II) in 700 ml ethanol with W-7 Raney Nickel prepared from Ni-Al alloy (see Org. Synthesis Coll. Vol 111,176(1955)) for 6 hours. Filter, evaporate in vacuum and can distill (140/0.01) to get about 2.2g oily olivetol dimethyl ether which can be reduced to olivetol as described elsewhere here. -... [Pg.45]

Other reagents which have occasionally been used to cleave hydrazides include diborane (which also reduces the carbonyl groups), sodium naphthalenide, 0,0-diethyldithiophosphoric acid, (EtO)2PS2H, - and sulfur monochloride. Nickel-aluminum alloy in aqueous methanolic potassium hydroxide is a good reagent for reductively cleaving a number of N—N bonded compounds, such as A -methyl-A -phenylhydrazine and Af/Z-dimethylnitrosamine. - Nitrosamines have also been cleaved with titanium(IV) chloride-sodium borohydride and lithium aluminium hydride. [Pg.389]

Reducing agents Aluminum hydride. Bis-3-methyl-2-butylborane. n-Butyllithium-Pyridine. Calcium borohydride. Chloroiridic acid. Chromous acetate. Chromous chloride. Chromous sulfate. Copper chromite. Diborane. Diborane-Boron trifluoride. Diborane-Sodium borohydride. Diethyl phosphonate. Diimide. Diisobutylaluminum hydride. Dimethyl sulfide. Hexamethylphosphorous triamide. Iridium tetrachloride. Lead. Lithium alkyla-mines. Lithium aluminum hydride. Lithium aluminum hydride-Aluminum chloride. Lithium-Ammonia. Lithium diisobutylmethylaluminum hydride. Lithium-Diphenyl. Lithium ethylenediamine. Lithium-Hexamethylphosphoric triamide. Lithium hydride. Lithium triethoxyaluminum hydride. Lithium tri-/-butoxyaluminum hydride. Nickel-aluminum alloy. Pyridine-n-Butyllithium. Sodium amalgam. Sodium-Ammonia. Sodium borohydride. Sodium borohydride-BFs, see DDQ. Sodium dihydrobis-(2-methoxyethoxy) aluminate. Sodium hydrosulflte. Sodium telluride. Stannous chloride. Tin-HBr. Tri-n-butyltin hydride. Trimethyl phosphite, see Dinitrogen tetroxide. [Pg.516]

IODINE (7553-56-2) A powerful oxidizer. Material or vapors react violently with reducing agents, combustible materials, alkali metals, acetylene, acetaldehyde, antimony, boron, bromine pentafluoride, bromine trifluoride, calcium hydride, cesium, cesium oxide, chlorine trifluoride, copper hydride, dipropylmercury, fluoride, francium, lithium, metal acetylides, metal carbides, nickel monoxide, nitryl fluoride, perchloryl perchlorate, polyacetylene, powdered metals, rubidium, phosphorus, sodium, sodium phosphinate, sulfur, sulfur trioxide, tetraamine, trioxygen difluoride. Forms heat- or shock-sensitive compounds with ammonia, silver azide, potassium, sodium, oxygen difluoride. Incompatible with aluminum-titanium alloy, barium acetylide, ethanol, formamide, halogens, mercmic oxide, mercurous chloride, oxygen, pyridine, pyrogallic acid, salicylic acid sodium hydride, sodium salicylate, sulfides, and other materials. [Pg.658]

The main interest in high temperature batteries such as lithium/iron sulfide, sodium/ sulfur, and sodium/nickel chloride is for electric vehicle applications due to their high specific power and energy possibilities. The replacement of the liquid lithium electrode with a solid LiAl alloy alleviated many of the safety concerns that plagued the other two systems, which are based on a liquid sodium electrode. In 1991, the United States Advanced Battery Consortium (USABC) selected the bipolar molten-salt LiAl/FeS2 battery to be developed as... [Pg.1316]


See other pages where Nickel alloys lithium chloride is mentioned: [Pg.174]    [Pg.709]    [Pg.711]    [Pg.607]    [Pg.1391]    [Pg.309]    [Pg.552]    [Pg.561]    [Pg.587]    [Pg.636]    [Pg.772]    [Pg.776]    [Pg.54]    [Pg.383]    [Pg.383]    [Pg.633]    [Pg.634]    [Pg.636]    [Pg.655]    [Pg.657]    [Pg.658]    [Pg.682]    [Pg.914]    [Pg.946]    [Pg.950]    [Pg.951]    [Pg.1235]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Alloying nickel

Lithium alloy

Lithium nickelate

Nickel alloys chloride

Nickel chloride

Nickel chloride-Lithium

© 2024 chempedia.info